
MASTERS THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF MASTER OF SCIENCE

TITLE: Application of Model Based System Engineering (MBSE) Principles to an
Automotive Driveline Sub-System Architecture

PRESENTED BY: Robert Kraus, George Papaioannou and Arun Sivan

ACCEPTED BY:

Advisor, Michael Vinarcik Date

Advisor, Dr. Jonathan Weaver Date

Department Chairperson, Dr. Darrell Kleinke Date

APPROVAL:

Dean, Dr. Gary Kuleck Date
College of Engineering and Science

i

Disclaimer

This thesis is submitted as partial fulfillment of the graduation requirements of

University of Detroit Mercy to obtain a Master of Science in Product

Development degree.

The conclusions and opinions expressed in this thesis are those of the authors

and do not necessarily represent the positions of the University of Detroit Mercy

or the Ford Motor Company.

ii

Preface

This thesis represents the culmination of our academic work at the University

of Detroit Mercy in combination with our many years of work experience at the

Ford Motor Company. Although this thesis is the result of our personal effort, we

would like to acknowledge and extend our sincere gratitude to the following

people for their valuable time and assistance, without whom the completion of

this thesis would have been impossible:

Mr. Michael Vinarcik, Adjunct Professor, University of Detroit Mercy for his

guidance, instruction and patience teaching MBSE, SysML and the MagicDraw

modeling tool.

Dr. Jonathan Weaver, Professor of Mechanical Engineering, University of

Detroit Mercy for his guidance, encouragement of innovation and teachings on

how to find and solve important problems others may overlook.

Mr. Charles Krysztof, Senior Engineer, Ford Motor Company for his expertise

on driveline sizing and torque transfer physics.

Mr. Michael Carter, Axle Systems Technical Specialist, Ford Motor Company

for his expertise on driveline system boundary diagrams and design rules.

No Magic, Incorporated for providing student evaluation licenses for

MagicDraw 18.2 with SysML plug-in for model based systems engineering. For

additional information on MagicDraw, e-mail sales@nomagic.com.

iii

Table of Contents

Disclaimer .. i

Preface... ii

List of Figures .. vi

List of Tables ... viii

Abstract ... 1

1. System Engineering Concepts .. 2

The System Engineering V-Model ... 2

System Boundary Definition... 5

System P-Diagram .. 7

2. Model Based Systems Engineering Concepts... 9

Language, Method and Tools ... 10

Functional Architecture .. 13

System Requirements.. 15

Logical Architecture ... 19

Physical Architecture .. 21

3. Driveline Definitions and Concepts.. 21

Driveline Architecture .. 22

Driveline Components .. 24

iv

Joint Definitions and Overview .. 29

Sub-System Definition.. 32

4. Driveline Sizing .. 34

The Purpose of Driveline Sizing... 34

Driveline Sizing Methodology.. 36

Sizing Tool Overview ... 38

Torque Transfer Physics ... 39

Required Inputs and Data.. 42

5. Driveline Model Structure .. 45

Functional Decomposition .. 45

Logical Decomposition... 48

Creation of Internal Relationships .. 50

6. Requirement Management .. 56

Import Requirements .. 56

Creation of Test Cases .. 61

Verification Matrix ... 64

Satisfy Matrix.. 69

7. Parametric Relationships .. 73

Sizing Inputs in System Model ... 73

Parametric Constraint Modeling ... 76

v

Parametrics Relationships for Driveline Sizing.. 77

Notes on Modeling Parametric Diagrams... 82

8. Benefits of Applied MBSE ... 84

Improved Communication .. 85

Management of Requirements .. 86

Parametric Input Cascade and Control ... 87

Conclusion .. 88

References... 89

vi

List of Figures

Figure 1-1, Driveline System Engineering V-Model.. 3

Figure 1-2, Context Diagram for Driveline System.. 6

Figure 1-3, P-Diagram for Driveline System.. 7

Figure 2-1, SysML Driveline Functional Decomposition 14

Figure 2-2, SysML Driveline Logical Decomposition 20

Figure 3-1, Typical IRS AWD Driveline.. 23

Figure 3-2, BDD of Common Driveline Systems... 24

Figure 3-3, Isometric View of IRS AWD Driveline....................................... 25

Figure 3-4, Transfer Case ... 26

Figure 3-5, Rear Axle ... 27

Figure 3-6, Rear Driveshaft .. 27

Figure 3-7, Front and Rear Halfshafts .. 28

Figure 3-8, Front Axle and Disconnect Device .. 29

Figure 3-9, Universal Joint Exploded View ... 30

Figure 3-10, Constant Velocity Joint .. 31

Figure 3-11, Flex Coupling Joint .. 32

Figure 4-1, Required Inputs and Context for Driveline Sizing....................... 37

Figure 4-2, Driveline Sizing Flowchart .. 39

Figure 5-1, Functional Decomposition of Driveline System 46

Figure 5-2, Logical Architecture of IRS Rear Axle Driveline System........... 49

Figure 5-3, Logical Architecture of IRS Powertrain System.......................... 50

Figure 5-4, Internal Block Diagram of AWD / 4x4 Sub-System 51

vii

Figure 5-5, Internal Block Diagram of IRS Driveline System 52

Figure 6-1, Process Flow Diagram for Requirements Import......................... 59

Figure 6-2, Process Flow Diagram for Creation of Test Cases 63

Figure 7-1, SysML Diagram of Required Inputs for Driveline Sizing 75

Figure 7-2, SysML Parametric and Requirement Diagrams........................... 77

Figure 7-3, SysML Parametric Diagram for Driveshaft 78

Figure 7-4, SysML Parametric Diagram for Impact Torque Calculation 80

Figure 7-5, SysML BDD for Powertrain Instances .. 81

viii

List of Tables

Table 2-1, Software Modeling Tools .. 12

Table 2-2, Available SysML Requirement Types .. 16

Table 4-1, Minimum Inputs Required for Driveline Sizing 43

Table 6-1, Requirements Verified by Test Case ... 65

Table 6-2, Verification Matrix for Performance Requirements...................... 66

Table 6-3, Verification Matrix for Business Requirements............................ 67

Table 6-4, Verify Table for Performance Requirements 68

Table 6-5, Satisfy Matrix for Business Requirements 70

Table 6-6, Satisfy Matrix for Performance Requirements.............................. 71

Table 6-7, Satisfy Table for Performance Requirements................................ 71

Table 6-8, Requirements Satisfied by Logical Block 72

Table 7-1, Parametric Inputs to Sizing Model .. 74

Table 7-2, Instance Table for Impact Torque Output 82

1

Abstract

This paper documents the real-world application of model-based systems

engineering (MBSE) methodology and principles to an automotive driveline

system. A system model developed in the course of this thesis supports the

definition and sizing of the driveline system to best communicate and deliver

functional specifications tied to customer requirements. Furthermore, this system

model documents, organizes, manages and provides traceability for all customer,

system, sub-system and component level requirements and is a useful tool

supporting the system architecting and specification cascade process.

To support the project our team investigated and analyzed existing driveline

component sizing tools and developed a comprehensive list of key assumptions

and system design requirements which have been linked through a

comprehensive SysML model. The key project deliverables are the SysML

system model and a list of lessons learned / best practices collected during the

development process.

The project was selected based on identified needs in the Ford Transmission

and Driveline Engineering product development process. This is believed to be

the first application of model based systems engineering at Ford Motor

Company. The system model was conceived and executed using No Magic,

Inc.’s MagicDraw software modeling package adapted to SysML systems

modeling.

2

1. System Engineering Concepts

Currently, automotive driveline systems engineering is accomplished using a

document based approach, where the system requirements and specifications are

controlled and communicated through paper or electronic documents. They may

also be resident in online databases or other storage media without rigorous

traceability. Typically, complex system specifications result in reams of paper

and electronic documents that are often incomplete or conflicting. The objective

of this paper was to develop a working SysML model to replace the document

based approach for a general driveline system as a proof of concept of the

application of Model Based System Engineering (MBSE) and SysML to a

mechanical system. The foundation for modeling any complex system is an

understanding of basic system engineering fundamentals.

The System Engineering V-Model

The V-model is a graphical representation of a typical product engineering

lifecycle. It was first developed in the 1980’s and has been refined and applied in

many different industries (Ryen 2008). Figure 1-1, Driveline System

Engineering V-Model illustrates a typical V-model diagram for the automotive

driveline system. The V-model divides the product development process into two

halves.

The left side of the V deals with decomposition and definition. In this portion

the top level system requirements are decomposed down to the sub-system level.

The sub-system requirements are then decomposed into the component level

3

requirements, which are further cascaded to the sub-component level. At each

level the requirements are defined and refined to the point of becoming design

specifications.

Figure 1-1, Driveline System Engineering V-Model

The right side of the V deals with integration and reconstitution. The designs

developed at the component and sub-component levels are assembled, integrated

and tested to ensure conformance to the original requirements. In this step the

engineer’s intent is to validate complete system performance. Each level of the V

has a specific validation plan. Performance to requirements is verified at the

system, sub-system, component, and, on occasion, even sub-component levels.

At the top system level the vehicle program and customer needs are received,

analyzed, and transformed into functional requirements that define what the

overall driveline system will do. At the top level the requirements define the

4

what, but not the how. This is the functional definition of the system and it

describes the ideal behavior of the system without any bias toward a specific

implementation.

At the sub-system level, a logical architecture is created based on the

functional definition. In SysML, the logical architecture represents an

intermediate abstraction between the functional and physical abstraction. The

components within the logical architecture represent abstractions of physical

solutions that deliver the functional operations (Pearce and Friedenthal 2013).

Consider the rear axle from a heavy duty pickup truck and a sports car. They are

physically very different, but they share the same basic functions. The logical

structure is a high-level design that defines the overall framework for the

driveline system and how the various sub-systems interact. The major sub-

systems are then identified and defined. These sub-systems are further

decomposed into components and sub-components. The system requirements are

allocated appropriately to each sub-group at each level. Once the requirements

are cascaded, the interfaces between the various sub-systems are defined.

In the traditional document based approach to system engineering,

specifications are created at each level of the V. These specifications are

managed independently by the various component engineers. Communication

and coordination can be difficult across the various sub-system boundaries. In

many cases these boundaries represent different suppliers, and in some cases

direct competitors. In the driveline world, a driveshaft supplier like Neapco may

not want to directly share their DFMEA (Design Failure Mode and Effects

5

Analysis) or DVP&R (Design Verification Plan and Report) with Dana, the axle

supplier, if it contains proprietary information. This results in communication

errors when specifications change or when requirements are generated at the sub-

system or sub-component level. As an example, assume that the top level system

engineer specifies that a system will “sense driveshaft speed.” Who does this

requirement apply to? Textually, it might be incorrectly applied to the driveshaft.

The requirement is correctly applied to the rear axle, but the signal is used by the

driveline controller. Even if the rear axle supplier includes a speed sensor, it may

not have the resolution required by the controller. In this manner the system

specification grows and grows and all communication between the axle and

controller supplier must be handled by the system engineer. These

communications disconnects result in system design errors.

System Boundary Definition

Incorrectly defined boundaries often drive mistaken assumptions and

miscalculations, thereby resulting in system failures. To prevent such failures, it

is critical to precisely identify the system’s boundaries and the system’s

interactions with the external environment. This can be a deceptively simple task

for the driveline, which is one of the more misunderstood systems in a vehicle.

A context diagram is a graphical tool for representing a system’s interactions

with the external environment. Figure 1-2, Context Diagram for Driveline

System illustrates the context diagram for a typical driveline system. Also known

as a black box diagram, it is characterized by a simple system representation in

6

the middle with minimal detail surrounding it. A black box definition should not

assume or expose the internal structure, behavior or properties of a system. This

approach delineates the definition of the specification (what the system is

expected to do) from any particular solution (how the system could be

implemented) (Pearce and Friedenthal 2013).

Figure 1-2, Context Diagram for Driveline System

Even this simplified driveline context diagram illustrates how many external

factors come into play when analyzing a complex system. Considerations must

be made for effects such as heat transfer, external contamination, interfacing

components, sub-system requirements and customer requirements. Even the

service technician must be considered when defining the system context. The

driveline system boundary is subjectively interpreted when one starts defining

inputs and environmental contributors. It is also this segregation of entities and

7

interactions which help to form and define the main substance for the system’s

requirements.

System P-Diagram

The system context can be further expanded and refined to include noise

factors, inputs, outputs and the resulting illustration is known as a P-diagram.

Figure 1-3, P-Diagram for Driveline System shows the input signals, noise

factors and control factors going into the primary function, which is the transfer

of torque from the output shaft of the transmission to the wheels (Carter 2015).

The input signal here is the torque transmitted through the transmission from the

engine as a result of driver input. The input signal also includes taking the loads

from the suspension mounts and wheels.

Figure 1-3, P-Diagram for Driveline System

8

The control factors are any features that aid in the intended function of torque

transfer over the life of the vehicle and include items such as heat dissipation,

gear ratio, spline size and bearing preload method. There are several noise

factors that need to be considered as well, including piece to piece variation,

degradation over time, customer usage, external environment and system

interaction. All of these factors that feed into the function block of the driveline

system appear in the context diagram, but are studied in detail to predict their

contributions to desired output, derived outputs / error states and potential failure

modes in the P-diagram.

The desired outputs shown in the driveline system engineering P-diagram are

impact torque, yield torque and fatigue torque capability. Diverted outputs / error

states can be locked axles, sudden or gradual loss of drive and degraded vehicle

control. An example of potential failure-modes would be failure of system at

lower than target impact load or failure to meet fatigue life.

9

2. Model Based Systems Engineering Concepts

The function of systems engineering is “to guide the engineering of complex

systems” (Seymour and Biemer 2011). As discussed in Chapter 1, complex

system specifications typically result in reams of paper and electronic documents

that must be continuously managed and updated by the system engineer.

Requirements can be generated or satisfied at the system, sub-system, component

or sub-component levels with limited (or no) communication between work

teams. Changes are not rigorously cascaded up or down most document based

organizations, which often results in conflicting or missed requirements. Outside

of functional testing, there is rarely any method to ensure all requirements are

satisfied or verified at the overall system level.

To resolve this situation, this team proposes adopting a model based rather

than document based approach for managing requirements. First, the

requirements and specifications are decomposed using the logical structure of the

systems engineering V-model. These requirements and specifications are then

imported into a Model-Based Systems Engineering (MBSE) software package

where they are tracked and verified throughout the project lifecycle.

A document based system specification can be thought of as a collection of

textual requirements for the system (Pearce and Friedenthal 2013). Beyond a

certain complexity level, a large number of specification requirements cannot be

effectively managed. In the case of an automotive system, if the vehicle

maximum speed is raised from 120 mph to 140 mph, it affects the specifications

10

for driveline shafts, bearings, seals, lubrication systems, heat rejection, NVH,

driveline joints and system durability. The requirement change must be cascaded

and verified at the system, sub-system, component and sub-component levels,

which can easily represent more than 50 individual affected sub-components.

Even if the requirement is captured and cascaded, there is no effective system to

verify that the updated requirement is satisfied. Application of MBSE has the

potential to solve this problem.

Language, Method and Tools

According to Lenny Delligatti, the three pillars of MBSE are the modeling

language, the modeling method and the modeling tool (Delligatti 2013). The

modeling language is any standardized medium for communication. The rules

defined within the modeling language give unambiguous meaning to the

model’s elements and relationships.

For our model, we have chosen to use Systems Modeling Language (SysML)

to define the driveline system’s structure, behavior, requirements and constraints.

SysML allows engineers and designers to express and communicate the essential

aspects of a complex system’s functions, structure, behaviors and requirements

in a concise logical model. Like any language, SysML has its own conventions

for grammar and vocabulary. In a sense, SysML is spoken when system

engineers use MBSE to communicate ideas about their systems to their

coworkers and suppliers. While SysML is common, it is not the only modeling

11

language available to systems engineers and other engineering domains will use

other languages more appropriate for their applications.

A modeling method is “a documented set of design tasks that a modeling

team performs to create a system model” (Delligatti 2013). The method ensures

that each team member is working to build the model consistently. In the absence

of a documented and agreed modeling method there can be significant variance

in the breadth, depth and fidelity of each engineer’s contributions to the model.

To ensure consistency, the project manager needs to clearly define the purpose of

the modeling effort. What does the team hope to accomplish? What are the

required inputs and outputs? The purpose defined will determine the level of

detail required for defining the external environment and functional

decomposition of the system. Effectively, the modeling method is closely tied to

project scope. Our team was able to work close together to maintain a consistent

modeling method through the course of the project, but on a larger team this

could quickly become a concern.

Finally, the team must select the modeling tool. The modeling tool is the

software package used to define and manage the system model. While the

modeling language is “vendor neutral,” the choice of modeling tool is not.

There are many commercial grade modeling tools available, in the same manner

that there are many CAD or CAE tools. A selection of available tools is listed in

Table 2-1, Software Modeling Tools.

12

There are many considerations in selecting a modeling tool; such as ease of

use, compatibility with existing systems, security or product support. But these

concerns are outside the scope of this paper. For this project we chose to use

MagicDraw by No Magic with the SysML Plug-In. MagicDraw is commercially

available modeling software that is geared towards enterprise implementations. It

is most often used for software development.

Table 2-1, Software Modeling Tools

MagicDraw supports UML, SysML, BPMN, UPDM, and other modeling

languages. MagicDraw’s native file format uses XML Metadata Interchange

(XMI) so models can be exported to other applications (No Magic Inc. 2015a).

We selected this software due to existing familiarity, but by no means was it the

only appropriate solution.

Software Package Creator / Publisher License

Agilan Visual Paradigm Commercial

Artisan Studio Atego Commercial

Enterprise Architect Sparx Systems Commercial

Cameo Systems Modeler No Magic Commercial

Rhapsody IBM Rational Commercial

UModel Altova Commercial

Modelio Modeliosoft Open Source

Papyrus Atos Origin Open Source

SysML Solution Concept Draw Commercial

Lattix Architect Lattix Commercial

Software Ideas Modeler Dusan Rodina Open Source

SysML Designer ObeoNetwork Open Source

SCADE System Esterel Technologies Commercial

13

MBSE and SysML were built directly upon the discipline of software

engineering and architecture. SysML was based on the actual standard for

software engineering, the Unified Modeling Language (UML). Software

architecture represents software elements realizing the functional aspects of a

product. SysML performs this same function for electrical, hydraulic and

mechanical systems using the same intellectual tools. UML was developed

within the Object Management Group (OMG) consortium (Balmelli 2007). XMI

is an Object Management Group (OMG) standard for exchanging metadata

information via Extensible Markup Language (XML). It can be used for any

metadata whose metamodel can be expressed in Meta-Object Facility (MOF)

(No Magic Inc. 2015a).

Functional Architecture

Functions define what a system does. They define what actions or activities

must be accomplished or completed to achieve a desired outcome. They are

behaviors. Any system can be modeled based on its functions. In the SysML

language, we elected to represent functions as operations. An operation is a

property of a block, where a block is an abstract representation of any part of a

system. A block can be a physical entity, in the case of hardware, or abstract, in

the case of a control signal or idea. Functions are linked through logical

relationships to the various sub-systems and components. Each level of the

model provides an increasing or decreasing level of specificity or abstraction.

14

The high level functional decomposition of an all-wheel-drive driveline is

illustrated in Figure 2-1, SysML Driveline Functional Decomposition. The

primary functions identified in this diagram are Direct Torque Front / Rear,

Transmit Torque, Disconnect Secondary Driveline, Multiply Torque, and Direct

Torque Left / Right. These functions are defined as operations in SysML and are

properties of a function-stereotyped block.

Figure 2-1, SysML Driveline Functional Decomposition

In this model the functions are related to the driveline sub-system through

the allocate relationship (dashed arrow head). A behavioral allocation

relationship refers to the activity of associating a function with a structural

element. In SysML, this relationship tells the reader that all instances of the

15

receiving block can perform the behavior (Delligatti 2013). Each affected sub-

system or component can then inherit the operation from the function-stereotype

block according to the relationships defined by the system engineer.

In the case of the Axle sub-system, it has inherited the operations Direct

Torque Front / Rear, Multiply Torque and Transmit Torque. Any functional

requirements associated with these three primary functions will be cascaded

down to the axle sub-system. If the system engineer later associates Maximum

Impact Torque with the Transmit Torque operation, the Max Impact Torque

value will automatically be cascaded to the Axle sub-system as a functional

requirement. In MBSE, Max Impact Torque need only be updated in one location

and any change to the requirement is automatically updated throughout the

entire model.

System Requirements

Requirements define customer and stakeholder needs in technical terms.

They describe what characteristics and activities the system shall satisfy. In

SysML, system requirement statements are also defined as objects. The

requirement element (the object) contains the requirement text and a unique

identifier. The requirement is then linked to a corresponding feature in the

logical definition of the system. The type of requirement defines the type of

feature the requirement can be associated with. Table 2-2, Available SysML

Requirement Types provides a list of standard requirement types in SysML.

16

Table 2-2, Available SysML Requirement Types

Functional requirements must be satisfied by operations, performance

requirements must be linked with value properties, interface requirements must

be linked to proxy ports, and so forth (No Magic Inc. 2015b). Refer to the

SysML online documentation for a full explanation of acceptable relationships

between requirement type and model objects. These restrictions provide rigor

and clarity when defining the system.

In the case of vehicle maximum top speed, it would be associated with the

top level abstraction Driveline System. The requirement is then inherited by all

generalizations or constructions of the concept Driveline System. Once the link is

created, SysML automatically associates the vehicle maximum top speed with

the appropriate sub-systems, such as the driveshaft and rear axle, and by

extension their associated components and sub-components. Thanks to this

feature, duplication of requirements across sub-systems is unnecessary and easily

Requirement Type General Description Example

Functional

Requirement

Specifies a behavior of the

system

Must transmit torque from transmission

to wheels.

Performance

Requirement

Specification, a quantifiable

measurement of performance

Operational at vehicle top speed of 120

mph.

Interface

Requirement

Specification for how system

components connect

Must mount to transmission output

flange PN FRZ102345.

Design Constraint
Design rule, or constraint on

implementation

Threaded fastners must use common

metric threads and standard hex sizes.

Physical

Requirement

Physical constraints on the

system

Must fit within underbody package

envelope.

Usability

Requirement

Constraint on usage by

physical actors

Must allow clearance for 95th% hand to

access control lever.

Business

Requirement

Constraint related to business

processes

System must be back compatible with

existing service axle lubricants.

17

avoided during model construction. Each requirement is created and

maintained in only one location.

In the example of the Driveline System V, top level requirements would be

impact torque or fatigue torque. As the system is decomposed, additional

requirements will be created or documented. In the case of the measure

driveshaft speed requirement, the user of the signal, the control module, would

create a requirement specifying the signal. That requirement would have a

relationship with the affected sub-system, axle, which would then inherit the

measure driveshaft speed requirement created by the control module team. In

SysML, it is easy to confirm that all requirements are mapped, or related, to an

object in the model such as a block, interface or operation. A single driveline

implementation can have as many as 800 separate requirements that the system

must manage and satisfy.

In SysML, the generalization relationship described earlier is used to inherit

functions and properties. Logical architectural elements specialize functional

architectural elements; they then inherit operations and other properties such as

requirements. This can greatly reduce the number of relationships that must be

managed. For example, if 100 driveline system-level design requirements are

related to the rear axle, and the rear axle has 100 components, 10,000 individual

requirement relationships are required to cascade the driveline requirements to

the component level. But using the generalization relationship, each requirement

must only be connected once to the Rear Axle logical block, and the requirement

will be inherited by each individual component.

18

Functionally, design constraint requirements are often developed by subject

matter experts as design rules. These requirements are normally created and

managed at the sub-system or component level. If a requirement or specification

is developed by the Driveshaft Technical Specialist, it is stored in the

requirements for driveshafts document. But what if the specification is actually

applicable to all mechanical components, such as grease sealing? Will it be

duplicated for transfer cases and axles? Do we end up with conflicting design

requirements? The document-based system is heavily dependent on good

communication across design teams to ensure that the requirements derived for

the driveshaft are consistent with other mechanical systems. Furthermore, it is

only effective if the requirement is read, understood and applied correctly when

the next driveline system design is developed.

Most requirements are managed at the component or sub-system level

without being tied back to the system as a whole. High level system

requirements, such as vehicle maximum speed, often will not be cascaded

through to the lowest level component directly, and as a result there is the

potential to miss vehicle level or system level requirements during the system

engineering exercise. Inheritance of requirements through generalization

relationships and the satisfy relationship in SysML prevent these errors.

Finally, to ensure system compliance, every requirement must be verified by

one or more test cases. Test cases are physical check points, such as design

reviews or validation tests, to ensure the design proposal meets the system

requirement or specification. If the driveline system must have disconnect

19

capability, the engineer must check that the system bill of material contains a

disconnect device. If the system is advertised to be capable of operation at -40

degrees Celsius, there should be a cold weather test procedure to validate

operation at -40 degrees Celsius. Each of these instances is a test case that is

associated with one or more requirements via the <<verify>> relationship.

Logical Architecture

A logical architecture defines how a system will be implemented. It

abstractly defines a technical solution based on the system’s required sub-

systems, components and their interrelations according to the functions, technical

requirements and customer needs defined earlier. A logical architecture should

only be created after the system’s functions and requirements are clearly defined.

It does not define any particular system implementation, but rather the general

guidelines of the eventual solution.

The object of creating the logical architecture is to parse out the system

functions in a logical manner that can be implemented in the final engineering

solution. Defining the sub-systems defines the interfaces. Linking the top level

functions with the applicable sub-system later establishes the inheritance of the

functional and performance requirements.

Figure 2-2, SysML Driveline Logical Decomposition illustrates the logical

architecture of the IRS driveline system. The diagram chunks the driveline

system into its component blocks, such as the axle, driveshaft and halfshafts. All

blocks are of the stereotype <<logical>>, indicating that these are abstract,

20

rather than physical, entities. The component blocks list the parts, values and

operations that have been defined or inherited from higher level abstractions. A

chevron (^) character preceding the object name indicate that it was inherited

from a higher-level element in the architecture.

Figure 2-2, SysML Driveline Logical Decomposition

The diagram also defines optional constructions using the multiplicity

relationship. A multiplicity defines how many entities are involved in each

relationship. For instance, the model defines the components included in the

21

AWD / 4x4 sub-system but also indicates that the entire subsystem is optional

with the multiplicity call out All Wheel Drive, 0..1. This indicates that the

driveline system can contain zero or one AWD sub-system. In plain terms, it

indicates that our customer can purchase this particular vehicle with or without

all-wheel-drive.

Physical Architecture

The physical architecture defines an actual instance of the real world product.

As an example, a physical architecture would have a specific bill of material with

component part numbers and CAD data. It is the lowest level of abstraction in a

MBSE installation. At the physical level it is possible to visualize the actual

system implementation. All of the component variable properties of the logical

model become fixed physical properties in the physical model.

In the instance of our IRS driveline, the physical architecture could be the

driveline system for the 2015 Mustang. It would include a two-piece aluminum

driveshaft, 8.8” aluminum rear axle with mechanical limited slip and two

halfshafts. Since the Mustang has no AWD option, the AWD subsystem

multiplicity in our logical model would be ‘0.’ Each of these components has a

physical part number and defines a specific hardware instance of our functional

and logical models.

3. Driveline Definitions and Concepts

22

An automobile driveline is the system of components linking the

transmission output to the drive wheels. By definition, the driveline explicitly

does not include the engine or transmission. The driveline’s primary function is

to transmit drive torque from the powertrain (engine and transmission) to the

ground (wheels). Secondary functions include reacting torque from the brakes,

carrying chassis loads, and transmitting torque from the wheels to the powertrain

during engine braking events. An automobile’s driveline system can be as simple

as two shafts connecting a conventional geared transaxle to the front wheels, or

as complex as an electro-hydraulically controlled torque vectoring system which

distributes torque to all four wheels via computer control.

Driveline Architecture

There are many different layouts and architectures that accomplish the

primary function of torque transfer. Most passenger cars are front-wheel-drive to

reduce weight and cost through a shared casting that incorporates both the

transmission and differential. Sports cars and luxury vehicles are often rear-

wheel-drive for handling and performance, through better weight and power

distribution. Trucks and SUV’s often have 4x4 systems for off-road capability,

or optional all-wheel-drive systems for improved traction and stability. Figure

3-1, Typical IRS AWD Driveline illustrates a typical independent rear suspension

all-wheel-drive architecture, such as the one found in the BMW X5 or Dodge

Durango.

23

Figure 3-1, Typical IRS AWD Driveline

Within the SysML modeling language, all of these variants are treated as

generalizations. Generalizations represent specific subtypes of driveline

systems. The generalization relationship conveys inheritance between any two

elements. The more general element is the supertype while the more specified

instances are all subtypes. The generalization relationship is intended to be one to

many. In the case of Figure 3-2, BDD of Common Driveline Systems the more

generalized element is Driveline System, and the more specialized elements are

Longitudinal Driveline System (rear-wheel-drive) and Transverse Driveline

System (front-wheel-drive). In SysML, an open arrowhead indicates a

generalization relationship. The direction of the arrow is from the more specific

instance to the more general type. The filled diamond arrowhead in the diagram

indicates a part relationship. In this diagram, the Differential is a part of the Axle

sub-system. The arrow points from the part to the up-level assembly.

24

Figure 3-2, BDD of Common Driveline Systems

The selection of the basic driveline system architecture is driven by many

factors, including drivability, off road performance, track performance, towing

capacity, vehicle package, fuel economy, weight, investment, cost, complexity or

customer demand.

Driveline Components

A typical 4x4 or all-wheel-drive (AWD) driveline consists of a transfer case,

front and rear driveshafts, front and rear axles, a disconnect device and four

25

shafts connecting the axles to the wheels. Figure 3-3, Isometric View of IRS

AWD Driveline illustrates the relationship and connections between the various

components for an independent rear suspension (IRS) driveline system. In pick-

up truck applications the independent rear suspension is replaced by a rear beam

axle to carry the vehicle payload.

Figure 3-3, Isometric View of IRS AWD Driveline

The function of a transfer case is to split the torque from the transmission and

direct it to the front and rear wheels. An AWD transfer case model is illustrated

in Figure 3-4, Transfer Case. There are many types of transfer cases, from the

rather simple manual control 4x4 cases found on heavy duty pick-up trucks; to

complex computer controlled automatic cases that direct torque based on driver

demand and/or vehicle dynamics. In all cases, the intent of the transfer case is to

direct torque to the wheels with the most traction. In front-wheel-drive

26

applications the PTU replaces the function of the transfer case. In the SysML

language the PTU is an instance of the generalization Transfer Case.

Figure 3-4, Transfer Case

The function of the front and rear axle is to multiply the torque from the

driveshaft and direct it to the left and right wheels. The torque multiplication is

fixed and is based on the axle ratio. An axle ratio represents the relationship

between the number of driveshaft revolutions to the number of wheel rotations

and is defined by the number of teeth on the rear axle ring and pinion gears.

According to Chevrolet communications manager Tom Wilkinson, the axle ratio

for Chevrolet pickup trucks is "chosen to balance performance, capability and

fuel economy,"(Kurt Niebuhr 2014). Lower numerical ratios are biased toward

fuel economy, while higher ratios provide additional towing capability. On a

vehicle equipped with 4x4 or AWD, the front and rear axle ratios must be the

same. Figure 3-5, Rear Axle highlights the rear axle geometry from the isometric

IRS AWD driveline package.

27

Figure 3-5, Rear Axle

Shaft components, such as driveshafts and halfshafts, are considered modular

components of the driveline system. They are manufactured as tubes, solid

shafts, welded tube shafts (WTS), swaged tubes, and monobloc tube shafts

(MTS). Shaft design selection is based on strength, stiffness and fatigue

durability requirements. Typically a driveshaft or halfshaft is designed as the

weakest component for durability. Figure 3-6, Rear Driveshaft highlights the

rear driveshaft in the AWD driveline model. This is a two-piece driveshaft with a

center bearing that connects to the vehicle underbody. The interface between the

shaft components and the mechanical components is typically a spline.

Figure 3-6, Rear Driveshaft

28

The primary functions of driveshafts and halfshafts are to transmit torque and

to accommodate chassis and suspension deflection, such as changes due to

payload, steering and vehicle cornering. Key design considerations are driveline

angles, torsional impact and torsional fatigue. The front and rear halfshafts are

highlighted in Figure 3-7, Front and Rear Halfshafts.

Figure 3-7, Front and Rear Halfshafts

The final primary component in the AWD driveline system is the disconnect

device. The purpose of the disconnect device is to disconnect the front axle from

the wheel ends. Along with the transfer case, the disconnect device stops the

front axle and driveshaft from spinning when AWD or 4x4 function is not

required. This reduces spin losses and improves fuel economy. A linkshaft based

AWD disconnect device is shown in Figure 3-8, Front Axle and Disconnect

Device, though there are alternative methods for decoupling, such as integrated

wheel ends, locking hubs and front axle mounted / integrated devices.

29

Figure 3-8, Front Axle and Disconnect Device

Joint Definitions and Overview

A key design consideration in driveline joint design is NVH, or noise,

vibration, harshness. A customer’s expectations for NVH refinement are often in

direct contradiction to the vehicle’s other design targets and attributes, like fuel

efficiency, weight reduction and cost. A primary goal of the driveline system

engineer is to develop a system that avoids known NVH phenomena. These

phenomena can include but are not limited to: launch shudder, which occurs

during a take-off launch and results from instability in the driveline; driveline

boom, which is an objectionable low frequency boom noise caused by driveline

resonances; and driveline whine, which is mainly caused by axle hypoid gear

transmitted error (Wellmann, T., Govindswamy, K., Braun, E., and Wolff, K.

2007).

There are three common types of driveline joints in production today. The

oldest and simplest is the universal joint or U-joint (UJ). It consists of two shaft

30

yokes positioned at right angles to each other and connected by a four point

cross tying the yokes together. The cross rides inside four bearing cap assemblies

which are pressed into the yoke eyes. This is illustrated in Figure 3-9, Universal

Joint Exploded View. U-joints are commonly found in both front and rear drive

shafts. The problem inherent in the basic design of the u-joint is that the angular

velocities of the components vary over a single rotation. This can result in NVH

concerns and limits their use to applications with low working angles.

Figure 3-9, Universal Joint Exploded View

The second common joint is the constant velocity joint (CVJ). CVJ’s allow a

shaft to transmit torque through a variable angle with a constant rotational speed.

This joint eliminates the variation in angular velocity inherent in U-joints, but

with a minimal increase in rotational friction and end play. Figure 3-10,

Constant Velocity Joint shows a typical fixed CVJ which is found on most

halfshafts. CVJ’s are typically more expensive than U-joints but allow much

higher working angles, in addition to improved working properties.

31

Figure 3-10, Constant Velocity Joint

The last commonly available driveshaft joint is the flexible coupling. Flexible

couplings are typically used to decouple NVH concerns between the

transmission and driveshaft / axle. Figure 3-11, Flex Coupling Joint illustrates a

common type of driveshaft flexible coupling. The input and output shaft flanges

are bolted to a disc made of rubber over nylon cord using alternating bolt

positions. This ensures that each shaft section is not rigidly connected to one

another, but instead through the rubber coupling. The elasticity of the rubber

absorbs vibration and flexes for alignment. It follows that the rubber must

withstand the vehicles maximum transmitted torque, for which reason the rubber

is often reinforced internally using molded-in nylon or carbon fiber materials. It

is a relatively expensive joint design and requires a minimal working angle.

32

Figure 3-11, Flex Coupling Joint

Engineering joint selection considers the joint working angle, average torque

transmitted, average speed and NVH requirements. Proper joint selection and

sizing are typically key enablers for reducing overall driveline system cost and

weight.

Sub-System Definition

For the purposes of this paper and the construction of the model, the all-

wheel-drive (AWD) or 4x4 system is considered to be a sub-system of the

driveline system. The AWD sub-system connects to the transmission output

(rear-wheel-drive or front-wheel-drive) and splits the drive torque from the

primary drive axle to the secondary drive axle. In the case of a front-wheel-drive

architecture, torque is sent to the rear wheels. In the case of a rear-wheel-drive

architecture, torque is sent to the front wheels.

Regardless of the vehicle architecture, additional components that are

included in the AWD system are a transfer case / PTU (rear-wheel-drive versus

front-wheel-drive), a secondary driveshaft, a secondary axle and typically some

33

type of disconnect device. In all cases other than a manual transfer case, torque

transfer is accomplished through an electronic driveline controller.

34

4. Driveline Sizing

Commercial truck customers are very demanding. The more their trucks can

haul or tow, the more work they can accomplish using fewer vehicles or repeat

trips, and the more profitable they become. They demand durability, reliability,

fuel efficiency and the lowest total cost of ownership. And they want it all

delivered at a competitive price. Customer expectations, fierce competition and

increasing governmental regulations are forcing automakers to rethink and

improve their product development strategy. It has created an environment where

technology, engineering tools, methodologies and manufacturing capabilities

must be chosen appropriately. Automakers must target beyond their current

limitations to achieve best in class product and customer satisfaction. Today’s

market demands creativity, innovation, precision, efficiency and most

importantly, excellence of execution. Design optimization of each component,

system and sub-system is the primary objective of any driveline sizing activity.

The Purpose of Driveline Sizing

In engineering, it’s very tempting to over-specify or over-size components to

achieve performance targets. Often, aggressive program milestones and budget

constraints can force engineers to take liberties in their deliverables through

minimal optimization exercises. This typically results in over-designing driveline

components, adding cost and weight, reducing fuel economy and hurting the

customer’s bottom line. On the other hand, under-specifying results in early

failures. In the short-term, usage related failures result in higher warranty repair

35

costs and reduced customer satisfaction, but the potential long term damage to

the brand is more concerning.

Today, driveline components are generally designed and sized individually,

often with insufficient input requirements, significant design carryover (the

“we’ve always done it this way” approach) and little regard for system

interactions. This can result in over-design and less efficiency for the overall

system. With the increasing complexity of today’s driveline systems, together

with the competitive demands placed upon automakers toward improving on

customer expectations, it has become evident that an advanced driveline sizing

tool is not just an asset, but a necessity.

A sizing tool takes the inputs from the vehicle team and converts them into

three basic outputs: impact torque, fatigue torque and yield torque. These three

basic outputs can vary along the driveline due to transfer case and axle ratios, but

are required for each component. The vehicle driveline defined here is the total

system connecting the transmission output to the vehicle’s drive hubs and

typically includes the driveshaft, axle and halfshafts. The driveline must be sized

to include all potential powertrain configurations (multiple engine displacements,

diesel, hybrid, manual / automatic transmission), drivetrain configurations (two

wheel drive, four wheel drive), customer usage profiles (heavy towing, snow

plow, passenger car, final gear ratio, wheel / tire sizing) and vehicle

configurations (multiple wheelbases, track widths, cab heights, suspension

displacement). A useful driveline sizing tool must tabulate output for each

required instance.

36

Driveline Sizing Methodology

Defined at a high level, sizing of driveline components is the alignment of

physical design attributes to the demands of rotational inertia and transmitted

torque to meet customer expectation. Individual component designs are

typically handled at a systems and / or sub-systems level, while any torque

considerations are individually balanced using a combined torque that addresses

both impact and continuous fatigue torque. A critical first step in any driveline

sizing activity is the gathering of comparative prior data, along with obtaining all

vehicle level inputs to be used for analysis and sizing calculations. This

comparative data is also useful in helping to determine input factors used in the

torque and sizing formula calculations. Any legacy data must also be maintained

as a large extensive database of sizing experience and proven benchmarking

from existing, and / or previous designs. A basic context diagram for driveline

sizing is shown in Figure 4-1, Required Inputs and Context for Driveline Sizing,

which lists the high level inputs, as well as their black-box integration and flow

through the system.

Prior to the development of comprehensive sizing tools, in house driveline

engineering traditionally relied on input from up-stream suppliers to size each

sub-system in series. Impact load and fatigue life calculations would be re-

calculated at each level. Universal joint (UJ) & constant velocity joint (CVJ)

durability life calculations were completed independently and were typically a

100% supplier dependent process. Additionally, there was a lack of any specific

library data for vehicle life calculation & correlation studies, and no library of

37

stored vehicle Road Load Data (RLD) for rapid access to compare design

options. Inefficiencies or miscalculations would often be cascaded throughout

the system design process.

Figure 4-1, Required Inputs and Context for Driveline Sizing

With an identified need for improved engineering efficiency in driveline

sizing, some organizations such as Ford Motor Company and Dana Corporation

developed in-house Microsoft Excel based driveline sizing calculation tools to

organize, integrate and automate the required inputs, torque transfer calculations

and outputs. Although typically in spreadsheet format, a sizing tool could also be

effective as reference files or a database based on benchmarking or industry

standards.

Determining which specific components need to be sized, begins with

selecting the best fit driveline configuration for a given vehicle segment. Will the

vehicle be conceived as front-wheel-drive or rear-wheel-drive? Does

38

performance require four-wheel-drive? Does the customer segment require some

type of traction control system? In addition to variations in driving dynamics,

there are also significant differences in how an all-wheel drive (AWD) or four-

wheel-drive (4x4) system reacts to a loss of traction. These decisions all

influence the torque calculations for the system. Accurate sizing of components

is not only critical to the successful engineering and service life of the vehicle,

but is best established early in the development cycle, greatly assisting program

flexibility by offering quick attribute changes when needed.

Sizing Tool Overview

The basic outputs of any driveline sizing tool are impact torque, fatigue

torque and yield torque. Figure 4-2, Driveline Sizing Flowchart is an overview

of the key inputs and logical calculations needed to generate the driveline impact

torques, which are usually most critical for axle, driveshaft and halfshaft sizing.

The flow diagram represents the sizing calculation from a left to right

progression, beginning with the input data on the left side. The torque transfer

physics calculations and logical decisions are in the middle of the chart. Finally,

the three critical output impact torque definitions are on the right side of the

diagram. These outputs are used for sizing the specific sub-system components.

39

Figure 4-2, Driveline Sizing Flowchart

Torque Transfer Physics

Driveline sizing must be achieved only through a complete understanding of

the physics behind torque transfer through the system and its effect on the

driveline components. Engine torque is transmitted through the clutch (manual

transmission applications) or the torque converter (automatic transmission

40

applications) to the transmission and through the driveline system to the wheels.

This results in a propulsion force exerted on the vehicle which is limited by the

traction at the wheels / tires. Wheel slip is the ultimate limit for the torque on the

driveline and represents the maximum torque that can be transmitted through the

driveline under any circumstance.

Torque can be defined as impact or continuous through vehicle life. Impact

torque is the maximum seen by the driveline and is related to inertia loading.

This torque is seen during a drag start, or pulling away from a stoplight with a

very heavy trailer. Continuous torque is also known as fatigue torque and

represents the average torque transmitted through the driveline during normal

operation. Very high impact loads result in overload failures. High continuous

torques result in fatigue, or wear out, failures. Regardless of configuration,

proper driveline sizing considers both impact and continuous torque demands in

combination to achieve a balanced design.

Power pack impact torque (Tpp) is the torque generated by the engine at the

transmission output shaft. It occurs during wide open throttle or clutch slip

conditions. The torque is an outcome of the inertia in the system and is higher

than the maximum torque generated by the engine. The impact factor is a

constant that is selected based on previous engineering experience and varies

throughout the industry. The general formula for a rear wheel drive vehicle is:

� � � = � � � � � � � � � � � � ∗ � � � � � � � � � � � � � � ∗ � � � � � � � � � � � � � � � � � �

∗ � � � � � � � � � � � �

41

Truncated transmission output torque (TT) is when torque must be reduced at

the transmission due to physical hardware limitations within the system. When

determined, the control system calls for reduced engine torque to the flywheel /

flexplate, which in turn adjusts (lowers) torque at the transmission output. This is

common in medium and heavy duty diesel trucks where the engine peak output

torques can be very high. The general formula for a rear wheel drive vehicle is:

� � = � ∗ � � � � � � � � � � � � � � ∗ � � � � � � � � � � � � ∗

� � � � � � � � � �

Axle ring gear impact torque (Trg) is torque seen by the rear axle due to axle

ratio multiplication. The general formula for a rear wheel drive vehicle is:

� � � = � � � � � � � � � � � ∗ � � � � � � � � � � � � � � � ∗ � � � � � � � � � � � � ∗

� � � � � � � � � � � � � � � � � �

Wheel slip torque (TWS) is the maximum torque that can be reacted by the

wheel. It is the torque at which the wheel loses traction and begins to spin,

thereby limiting the maximum torque that can be transmitted to the ground. It is

dependent on the weight of the vehicle and the friction at the tire surface. It can

be affected by vehicle dynamics. During drag start events a car’s weight will

shift and tend to squat, further increasing the downward force on the axle and

tires. The general formula for a rear wheel drive vehicle is:

� � � = (� � � � � � � ℎ� � � � � � � � ℎ� / 2) ∗ � � � � � � � � � � � �

∗ � � � � � � � � � � � � � � � ∗ � � � � � � � � � � / (� � � � � � � � � � � � � � �

∗ � � � ℎ� � � � � � � � � � � � � � � �)

42

These torque calculations apply to driveline impact torque. Similar

calculations are available to determine fatigue torque and yield torque.

Required Inputs and Data

Determining and communicating the correct input data needed for the

driveline sizing process is critical to ensure useful output. The question often

asked of the driveline system engineer is “What minimum information is needed

to size the driveline?” To avoid wasted time and effort, it is important for the

system engineer to understand the minimum data required to complete the initial

sizing torque calculation. Further output refinement is then implemented as an

iterative process utilizing road load data (RLD) and legacy data from previous

designs.

Typically the component engineer has the responsibility for sizing and

delivering individual driveline components once the inputs and metrics data is

sourced from PDL, powertrain line-ups, weight charts and tire drawings. A list of

required sizing inputs is presented in Table 4-1, Minimum Inputs Required for

Driveline Sizing. This represents the minimum data needed before starting a new

driveline design, and is also useful for assessing any changes through the

development process.

43

Table 4-1, Minimum Inputs Required for Driveline Sizing

Beyond the minimum requirements, useful supplemental data can include:

Road Load Data (RLD), often referred to as durability data, is acquired

through instrumented vehicles. To acquire RLD, a test vehicle is instrumented

with load cells, accelerometers, strain gages, torque meters and force transducers

Sizing Input Typical Notes
Vehicle Assumptions

Driveline Configuration (Type) 4WD/4x4 What style of driveline is required?

Brake Traction Control Equipped Yes Brakes affect axle loads and tire slip.

Max GVWR 6000 How much can the vehicle weight?

Max Front GAWR 2800 How much load is on the front axle?

Max Rear GAWR 3200 How much load is on the rear axle?

Max GCWR 11000 How much can the vehicle tow?

Durability Road Load Data Set (RLD) RLD What is the durability requirement?

Engine

Engine Torque in 1st Gear 280 Drag start torque.

Highest Engine Torque Available 400 Total max output torque.

Engine Torque in Rev. Gear 280 Max torque in reverse.

Engine Moment of Inertia 7.7 Inertia is related to impact load.

Transmission

Transmission Type Auto Auto or manual transmission?

1st Gear Torque Truncation 350 Max torque out of transmission.

2nd Gear Torque Truncation 400 Max torque out of transmission.

Transmission Efficiency 0.93 Transmission losses.

Torque Converter Ratio @ Stall 2 Ratio determines start performance.

Torque Converter Ratio @ 0.5 Speed Ratio 1.6 Ratio determines start performance.

Transaxle FDR 3.7 Final drive ratio for FWD.

Flywheel Moment of Inertia - Manual Trans 6.8 Inertia is related to impact load.

Clutch Peak Torque Limiter - Manual Trans 100 Max torque out of transmission.

Number of Forward Gears 10 How many gears?

1st Gear Ratio 4.2 Torque multiplication.

2nd Gear Ratio 2.4 Torque multiplication.

Reverse Gear Ratio 3.4 Torque multiplication.

Driveline

4x4 Transfer case type – Active/On Demand Active Determines torque bleed front / rear.

4x4 Transfer case Max Coupler Torque 1250 Max torque to front.

Flex Coupling Equipped Yes Attenuates impact.

Total Driveshaft Stiffness 600 Attenuates impact.

Highest Joint Angle @ Design 5 Joint sizing input.

Rear Axle Ratio 3.7 Final drive ratio for RWD.

Locking Differential Equipped Yes Increases halfshaft torque.

Wheels / Tires

High Rotational Inertia Tire Equipped Yes Increases wheel slip impact.

Tire Size 265/55R18 Tire slip.

Max Tire SLR 13.75 Tire slip.

Tire Coefficient of Static Friction 0.92 Tire slip.

44

and run through a simulated durability course. The data is accumulated into a

database and plotted as a torque histogram. Good RLD is typically not available

until after the first prototype vehicles are built and tested, and surrogate data is

often used for driveline sizing.

Supplier Joint Data is the background information provided by driveline

suppliers and is often useful for selecting driveshaft and halfshaft components.

Knowing available joint sizes, U-joint yoke geometries, shaft geometries and

design and materials can be an invaluable pre-screening method when an

engineer requires short production lead times or minimal investment.

Benchmarking Data is the library of competitive information used for

establishing logical comparisons between initial design concepts and existing

competitive designs. It is particularly useful for validating initial sizing

calculations in setting cost or weight targets. Automotive manufacturers spend a

significant amount of money and time performing accurate benchmarking studies

to set appropriate targets.

45

5. Driveline Model Structure

“Model-based systems engineering (MBSE) is the formalized application of

modeling to support system requirements, design, analysis, verification and

validation activities beginning in the conceptual design phase and continuing

throughout development and later life cycle phases.” (Operations 2007)

According to the 2007 report of the International Council on Systems

Engineering (INCOSE), model based systems engineering was very likely to

replace the document-centric approach practiced by most systems engineers. By

2011 SysML was used by 20% of aircraft and defense companies and 7% of

automotive manufacturers (Paredis and Davies 2011). It appears likely that

MBSE will influence the future practice of automotive systems engineering once

it is further integrated into the systems engineering product development process.

Functional Decomposition

The driveline system functional decomposition starts from the P-diagram.

The team identified five basic behaviors, or operations, that a driveline system

had to perform to meet the customer’s basic needs. The system needed to 1)

transmit torque, 2) direct torque left / right, 3) direct torque fore / aft, 4) multiply

torque and 5) disconnect the secondary driveline. These basic functions are

shown in Figure 5-1, Functional Decomposition of Driveline System. Each

function is associated, or mapped, to at least one logical block. The function, or

operation, is then inherited through generalizations.

46

Figure 5-1, Functional Decomposition of Driveline System

Transmission of propulsion force from the powertrain to the wheels is the

most basic, and most obvious, driveline function. At the functional level of

abstraction the degree or amount of torque transferred is not necessarily relevant

– all that matters is that all drivelines transmit torque. In our model this function

is inherited by all mechanical sub-systems and components. It is important to

note that no one component alone delivers or satisfies the transmit torque

function. This is an emergent behavior of the total driveline system.

47

The next two functions identified are similar / related. Direct torque left /

right is a behavior of an axle or transaxle differential. The differential takes the

incoming torque, turns it ninety degrees and splits it to the left and right wheels.

It is important to note that functions are independent of the design concepts that

accomplish the behavior. An open differential, limited slip differential, locking

differential and electronic limited slip differential all accomplish the same basic

function – direct torque left and right. But they accomplish the task with varying

degrees of effectiveness from the perspective of the customer. Direct torque fore

/ aft is similar, but is associated with the logical block Transfer Case and is only

applicable to AWD or 4x4 vehicles. In some design concepts these functions can

be electronically controlled, and as such are also associated with the driveline

control module.

The function multiply torque is associated with the axle or front-wheel-drive

transmission final drive ratio. For efficiency, the rotational output speed from the

transmission output is much higher than wheel speed. Angular velocity and

torque are inversely related. As the driveshaft speeds go up, the torques carried

by the driveline go down and the physical size of the shafts and joints can be

made smaller. In our model, the multiply torque function is only associated with

the axle.

The last identified function is to disconnect the secondary driveline. In

practice, the secondary driveline in AWD or 4x4 systems is disengaged to reduce

rotational losses, improve fuel economy and improve NVH. Of the five

functions, this is the one least connected to customer expectations. It is possible

48

to develop a driveline system without a disconnect mechanism, but for the

purposes of our model implementation this is considered to be a basic function of

the system. The disconnect function is associated with the disconnect device and

the driveline control module.

Logical Decomposition

The driveline system logical decomposition starts with the functional

decomposition. Once the system functions are defined, the system engineer is

able to parse the functional requirements into distinct logical blocks. This

decomposition is directed through engineering judgment and experience. Figure

5-2, Logical Architecture of IRS Rear Axle Driveline System illustrates the

logical architecture of an IRS driveline with available AWD. The IRS driveline

block in the upper left is connected to the sub-systems and components using

solid diamond arrows, indicating composition relationships. This diagram shows

the value properties, reference properties and the operations associated with each

logical block.

During the process it is important to describe the various sub-systems and

components in as abstract or general a manner as possible. A good logical

decomposition should remain untethered to any specific design concept, since it

is unlikely that the first design concept will be the best design concept. Figure

5-3, Logical Architecture of IRS Powertrain System shows how the IRS driveline

fits into the overall IRS powertrain system. The driveline is a sub-system of the

powertrain, no different than the engine or transmission.

49

Figure 5-2, Logical Architecture of IRS Rear Axle Driveline System

This logical diagram provides the structure required to capture the vehicle

inputs required to support our parametric equations for calculating driveline

impact torques. A properly configured and bounded driveline system engineering

model can be capable of defining the minimum customer requirements to size

and specify the driveshaft, rear axle and halfshafts.

50

Figure 5-3, Logical Architecture of IRS Powertrain System

Creation of Internal Relationships

Internal relationships are created in SysML through the use of internal block

diagrams (IBD). Internal block diagrams are based on UML composite structure

diagrams and include restrictions and extensions as defined by SysML. An IBD

captures the internal structure of a block in terms of properties and connections

among properties. A block includes properties, so that its values, parts, and

references to other blocks can be specified. An IBD created for a block (as a

51

model inner element) will only display the inner elements of the block, such as

parts, ports and connectors. An IBD created for a package will display additional

elements such as shapes, notes and comments.

Figure 5-4, Internal Block Diagram of AWD / 4x4 Sub-System shows the IBD

for the generic all-wheel drive system. Note that it only includes parts that are

part of the AWD sub-system. The outer boundary of the diagram is essentially an

abstract representation of the outer boundary of the assembly. All properties and

connectors that appear inside an IBD belong to, or are owned by, the block

whose name is written in the diagram heading. That one particular block is the

context of the diagram. SysML allows any property (part) to be shown in an

internal block diagram to display compartments within the property (or part)

symbol (No Magic Inc. 2015b).

Figure 5-4, Internal Block Diagram of AWD / 4x4 Sub-System

52

Figure 5-5, Internal Block Diagram of IRS Driveline System is the IBD for

the IRS AWD driveline, or independent rear suspension all-wheel drive. This is a

primary rear wheel drive based system with the engine and transmission

packaged longitudinally in the vehicle. The engine transmits torque to the

transmission which then multiplies the torque according to the ratio of the gear

that the transmission is operating in. The transmission is outside the driveline

system control volume, and hence appears as a reference property in the internal

block diagram, indicated by the dashed boundary. The AWD sub-system

referenced earlier is a part of the IRS driveline system and appears inside this

diagram.

Figure 5-5, Internal Block Diagram of IRS Driveline System

The torque output from the transmission is fed into the transfer case through

a spline interface which is shown as a port on the transmission with a flow

property of torque out, and with a port on the transfer case with a flow property

of torque in. The transfer case then splits the torque output to the front and rear

53

axles through the front and rear driveshaft. The front / rear torque split depends

on driver demand, terrain conditions and vehicle dynamics. The transfer case has

an electrical interface which connects to the driveline control module and is

indicated separately on the IBD. Each electrical connection or data flow can be

illustrated as a connector on the diagram. The connection to the rear driveshaft is

also a spline interface and is shown as a port on the transfer case with a torque

out flow property. The rear driveshaft block has a corresponding port which has

a torque in flow property. SysML allows the system engineer to specify the flow

direction of a port through a conjugation property and will ensure that the flow

directions match -up.

The rear driveshaft transmits torque through another spline interface to the

rear axle, which is shown by another torque out port. The corresponding torque

in port on the rear axle then sends that torque directly to an electronic limited slip

differential (eLSD), which is a part of the axle, so the port on the eLSD still

shows torque in. The eLSD also has an electrical interface port, which is

connected to the driveline control module. The differential multiplies the input

torque by the axle ratio and then splits torque into two output torque components,

one for the left rear halfshaft and the other for the right rear halfshaft. These are

shown as spline interface ports with torque out flow properties. The amount of

torque that is sent to each halfshaft depends on the traction at each wheel, and

this is accomplished by the eLSD and controlled by the driveline control module.

The halfshafts then transmit torque to the wheel hubs through spline interfaces

which have torque in and torque out flow property ports.

54

The transfer case output torque to the front driveshaft can be described as a

subsystem, which can be called the all-wheel drive subsystem. The architecture

is primarily rear wheel drive and hence the front drive system becomes part of

the all-wheel drive system. If the architecture was primarily front wheel drive,

then the rear drive system would have become part of the all-wheel drive sub-

system. Here the torque out port from the transfer case to the front driveshaft is a

spline interface with a torque out flow property. The corresponding torque in

port is also a spline interface shown on the driveshaft. The driveshaft then

transmits that torque through another spline interface to the front axle, which is

shown as a port with torque out as the flow property. This output torque is then

routed through a disconnect device, which outputs torque to the left front

halfshaft, through similar spline interfaces with torque out and torque in flow

properties.

The disconnect system disconnects torque to the right halfshaft in concert

with the front axle. A characteristic of a differential is that torque to the left and

right is always balanced (equal). As any winter driver probably knows, if one

drive wheel is on ice, and one wheel is on dry pavement, the vehicle doesn’t

move. The differential disconnects the left hand halfshaft thereby dropping the

wheel torque to zero. Since there is no reaction torque, the torque to the right

wheel also drops to zero, the differential will begin to over-spin, and the axle

ring gear will stop.

Finally, the four wheels and tires are captured on the IBD as reference

properties since they are outside of the IRS AWD system. The electrical

55

connections between the driveline controller and the various electrical

components are shown in an extremely simplified manner for illustrative

purposes only. In a more detailed IBD the connections would detail both

electrical power and information flows.

56

6. Requirement Management

As discussed in Chapter 3 and applied in Chapter 5, a complex system is

represented graphically in MBSE as a series of logical blocks with defined

relationships. The ultimate goal of MBSE is to efficiently and reliably guarantee

that the customer’s needs are satisfied with high quality, reliable, efficient

solutions delivered on time throughout a system’s entire life cycle. In practice,

this means documenting and verifying that the system meets the customer’s

requirements. The methodology to accomplish this goal is requirements

traceability through SysML.

Import Requirements

As mentioned in earlier chapters, document-based systems engineering

results in reams of paper and electronic data. At Ford Motor Company, a basic

IRS driveline system has over three-hundred documented requirements,

including system specifications, sub-system specifications, design rules and basic

assumptions. But the three-hundred number is misleading. This is only the

number of unique requirements that were identified after importing the Ford

Motor Company control documents into the system model. The original number

was over five-hundred requirements

If a Ford system engineer was required to certify all of the IRS driveline

requirements, he or she would have to go through all five-hundred requirements

individually. In some cases the various requirements are actually conflicting. As

requirements change, they need to be coordinated so that the changes are

57

captured across each instance, but they often are not, resulting in inconsistencies.

And the total number of requirements are likely to grow. New requirements are

likely to be written in the future to accommodate changing technology as

automotive drivelines adopt electronic slip control, electric secondary drive and

supplemental electronic content.

The reason the Ford system requirements and specifications are so

cumbersome is that they were developed and managed in a piecemeal fashion.

Many were developed from customer usage, to deliver better functional

performance or improved durability. Some were developed at the manufacturing

level to improve ease of assembly, to carry a lower number of unique parts or to

achieve modularity. Some were developed at the customer service level to

improve serviceability or ensure compatibility with commonly available parts,

such as fluids that require frequent change intervals. Some were developed by

top management for geopolitical or business reasons. These reasons for

requirements align closely with the categories of SysML requirements covered in

Table 2-2, Available SysML Requirement Types.

In the case of Ford Motor Company’s document-based system, requirements

with multiple test cases are repeated for each test case. This created a situation

where the same requirement was duplicated for every unique test case, thereby

increasing the complexity and making the system even less friendly to the

engineer.

58

In order to import requirements from a repository which contains redundant,

conflicting and duplicate requirements, data parsing is required. The team had to

go through a rigorous and iterative process of reading every one of the five

hundred or so requirements and then classifying them into SysML requirement

types. After the requirements were classified, separate comma separated value,

or CSV, files were created for each requirement type containing all the

requirements that were classified for the particular type. The critical data

columns identified for creating these files contained a unique identifier for each

requirement (UID), the requirement name, the text of the requirement and the

priority level. Individual CSV files were created for the functional, performance,

interface, design constraint, physical, usability and business requirement types.

The MagicDraw software user interface makes it relatively easy to import

requirements once they are classified. The software has an import CSV feature

that allows the user to import multiple fields of data in CSV format. Using the

CSV import feature, requirements are imported into a target package which in

this case was the requirements package in the model. In MagicDraw parlance a

package is equivalent to a file folder. Within the requirements package, smart

packages were created for each of the requirement types. Each requirement type

CSV file was then imported into the corresponding smart package for the

requirement type. This level of organization makes it easy for the user to parse

the system requirements. Figure 6-1, Process Flow Diagram for Requirements

Import illustrates the import process the team followed.

59

Figure 6-1, Process Flow Diagram for Requirements Import

The import process requires the selection of a target element type, which in

the case of requirements is called a class. A class is a definition for a resource. It

includes information that describes the features of an entity and how it can be

used. In software terms, code is written as a set of classes and references to

behaviors defined by the classes (No Magic Inc. 2015b).

The next step in the process requires the selection of a target stereotype. A

stereotype defines a new kind of model element by adding properties, constraints

60

or semantics to an existing kind of model element (Delligatti 2013). Available

stereotypes include the standard SysML requirement types, such as functional

requirements and performance requirements. In our case, an additional

stereotype was required with unique identifier and priority level tag definitions.

Selecting the new stereotype in addition to the standard requirement stereotype

corresponding to the type of requirement to be imported allowed the unique

identifier to be something other than the name of the requirement. In the case of

the driveline system, this was the requirement number. This allowed

requirements listed with the same name, such as Driveline Angle, to be imported

as separate requirements with different requirement numbers.

After all the above parameters are specified in the CSV import dialog, the

target file with the specific type of requirement can be selected and then opened.

After the dialog box opens the file, the requirement number column is assigned

the unique identifier tag, the name column the name tag, the text column the text

tag and so forth. The process is repeated for each type of requirement (each type

of requirement has its own file) and each requires the corresponding stereotypes

to be selected along with the user defined stereotype that was created. The

imported requirements’ stereotypes can be changed without much effort, which

means that even if the system modeler made a mistake in classifying the

requirement before the import, he or she can easily fix it in the model.

Requirements are an important part of the entire system model and this is

evident when the satisfy and verify relationships are considered. Logical

elements have to satisfy every requirement and test cases are used to verify every

61

requirement. Hence, the proper classification of requirements in the system

model is crucial for their association to the proper logical elements and test

cases. Some generic test cases such as a design review can be created for almost

every requirement, but a performance requirement requires a specific test case

with an objective numerical value for verification. The logical elements that

satisfy the requirements also require careful attention; otherwise the software

will report errors.

Creation of Test Cases

System requirements must be verified to ensure that the system performance

meets customer expectations. What is typical industry-wide is that requirements

are verified by tests. In the language of SysML, tests are called test cases. To

ensure system performance every requirement in SysML must be verified by at

least one test case. In the case of our driveline system model, many of the

requirements were imported from the Ford corporate requirement repository into

SysML. The imported requirements had associated verification tests; therefore,

the same repository was used to generate the CSV list of test cases for import

into our driveline system model.

Once the test case list was identified, the actual process followed for the

import of test cases into MagicDraw is very similar to the process followed for

the requirements import. When a test case list is generated, care must be taken to

import the correct associated data. In our model, we imported the unique Ford

test identification number (test ID), test name, test description, prototype type

62

and associated requirements. The Ford test ID was used as the SysML UID.

Figure 6-2, Process Flow Diagram for Creation of Test Cases lays out the

process followed for test case importation and incorporation into the driveline

system model.

The first step to import the test cases into MagicDraw is to save the test case

list as a CSV file. Second, create a Test Case package in the model. After the test

case package is created, a new stereotype needs to be created for test cases. This

new stereotype is used to add the definitions Test Case UID for test ID number

and Prototype Type for the level of prototype used for the test. Then open the

CSV import dialog box in MagicDraw. In the dialog box, select the Test Case

package as the target package. Once the package is selected, select Activity as the

target element type. Then select the standard SysML Test Case stereotype and

concurrently select the recently created unique test case stereotype. Finally,

select the test case CSV file and open it.

63

Figure 6-2, Process Flow Diagram for Creation of Test Cases

The next phase of the import involves mapping, which is assigning the

appropriate SysML properties to the relevant columns of data from the CSV file.

In the property list select the Test Case UID tag and the Test ID column in the

CSV data and add to the key property field and to the property map. This will

delete all duplicate test cases to prevent redundancy. Second, select Name in the

property list and the Test Name column in the CSV data and add to the property

map. Third, select Prototype Type from the properties list and select the

64

Prototype Type column in the CSV data file and add to the property map.

Finally, select Owned Comment from the properties list and select Test

Operating Conditions (Description) from CSV data file. Once mapping is

completed, the test case import is finished. All of the test cases will be

documented and available for association with the previously imported system

requirements.

Verification Matrix

The verification matrix shows the verify relationships from test cases to the

appropriate requirements. At this point, all the requirements and test cases have

been imported into the model. The next step involves creation of the verify

relationships from the test cases in the model to the appropriate requirements.

When there are hundreds of requirements and test cases, as in the case of the

driveline system model, the process of making the verify relationships is a very

arduous one. Each requirement is verified by one or more test cases, and each

verify connection can be made using the requirement verify matrix, or using a

table format.

A test case table was created with all the test cases within the model. This

method of making the verify relationships ensures accuracy, as each row is

selected and the verify relationships are made individually. The model has one

hundred and eighty two individual test cases, and as a result it took a significant

amount of time to make verify relationships from each test case to the

65

appropriate requirements. Several test cases satisfied multiple requirements as is

evident from Table 6-1, Requirements Verified by Test Case.

Table 6-1, Requirements Verified by Test Case

Over five hundred verify relationships were made in the process of veryifyng

requirements. Design constraints were the most numerous type of requirement as

there are two hundred and eighty four design constraints in the system model. All

of the verify relationships for design constraints addedup to four hundred and

seventy one relationships. This is easily visualized in the MagicDraw software,

but hard to reproduce as a picture in a word document. Table 6-2, Verification

Matrix for Performance Requirements illustrates the MagicDraw verification

matrix for the driveline model performance requirements.

Requirement

Type

Number of Unique

Requirements

Total Number of Test Cases

(For Each Rqmt. Type)

Functional

Requirements
0 0

Design Constraint

Requirements
284 471

Performance

Requirements
15 36

Physical

Requirements
4 5

Interface

Requirements
0 0

Business

Requirements
9 11

Usability

Requirements
14 18

66

Table 6-2, Verification Matrix for Performance Requirements

Table 6-3, Verification Matrix for Business Requirements is another example

of a verify relationship matrix, but for the business requirements. The slanted

arrows indicate a relationship, or link between the performance requirements on

the X-axis and the test cases on the Y-axis.

67

Table 6-3, Verification Matrix for Business Requirements

There are other ways to vizualize the verify relationship in the system model,

such as a table. The corresponding table for performance requirements is shown

in Table 6-4, Verify Table for Performance Requirements. Due to size, this table

is only a partial tabulation of the complete requirement validation.

68

Table 6-4, Verify Table for Performance Requirements

It is possible to input the verify relationships graphically, by drawing

connectors between the requirement and test case blocks, textually, by creating

the relationship in the specification window, or via the verification matrix by

clicking in the appropriate box and selecting create relationship. All of these

methods are equivalent when creating the relationship abstraction. Once all

relationships are created, it is a very easy check to confirm that every

requirement is linked to at least one test case and that every test case verifies at

least one requirement.

69

Satisfy Matrix

Requirements are eventually satisfied by physical elements, and in the case

of the driveline system, a physical element could be a specific model of transfer

case or front axle. In MBSE this relationship is created at the logical level of

abstraction, prior to any physical parts being designed. The satisfy matrix

indicates that each requirement is mapped to at least one logical block through

a satisfy relationship that indicates that the logical block is required to deliver or

meet the requirement. Each requirement is then connected to at least one logical

element that satisfies the particular requirement.

The majority of the requirements are design constraints and the satisfy matrix

is very large and not easily shown on a word document. Using MagicDraw

however, it is easy to parse through the satisfy matrix for design constraints, and

it is easy for any sub-system or component engineer to understand which design

constraints his or her system needs to satisfy. The same holds for all

requirements. One example of a satisfy matrix for logical elements that satisfy

business requirements, is given in Table 6-5, Satisfy Matrix for Business

Requirements.

70

Table 6-5, Satisfy Matrix for Business Requirements

Another example for a satisfy matrix shows the satisfy relationships between

a set of logical blocks which contain value properties and performance

requirements. Table 6-6, Satisfy Matrix for Performance Requirements shows the

satisfy matrix for performance requirements.

Satisfy relationships can also be created and viewed in a tabular format. The

table format can be used to separate the requirements out by sub-system or

component as illustrated in Table 6-7, Satisfy Table for Performance

Requirements. The table shows all the requirements that are satisfied by the

driveline system , along with the unique identifiers for the requirements.

71

Table 6-6, Satisfy Matrix for Performance Requirements

Table 6-7, Satisfy Table for Performance Requirements

There are a total of three hundred and twenty six individual requirements

that are satisfied by logical element blocks. A better illustration of the number of

requirements satified are given in Table 6-8, Requirements Satisfied by Logical

72

Block. The table shows all the logical elements in the driveline model that satisfy

requirements, and the requirements are separated into the seven different SysML

requirement types.

Table 6-8, Requirements Satisfied by Logical Block

Logical Elements

No. of

Functional

Reqmt.

Satisfied

No. of Des.

Constraint

Reqmt.

Satisfied

No. of Perf.

Reqmt.

Satisfied

No. of

Physical

Reqmt.

Satisfied

No. of

Interface

Reqmt.

Satisfied

No. of

Business

Reqmt.

Satisfied

No. of

Usability

Reqmt.

Satisfied

AWD / 4x4 Sub-System 16 1 2

AWD Sub-System 4 1 2

Axle 54 2 2

Axle Lash:Value Properties::Lash 2

Axle Ratio:Real

Axle / T-Case Inheritance

Balance:Value Properties::Imbalance 2

Composite Flange RO:Value Properties::Runout 2

Max Sump Temp:Value Properties::Temperature 4

Beam Axle 3 1

Controls Inheritance Block 1

Coupling 3

Disconnect Device 4

Driveline Control Module 1

Driveline System 14 1

Total Lash:Value Properties::Lash 1

Driveshaft 109 1 5

DS Lash:Value Properties::Lash 1

Electronic Limited Slip 1

Electronic Locking 1

Front Axle 11 1 2

Halfshaft 21 1

HS Lash:Value Properties::Lash 1

IRS Driveline 1 1

Mechanical Limited Slip 2

PTU 17 1 1

PTU Lash:Value Properties::Lash 1

Shift Lever 5 2

Transfer Case 20 1 1 1

TC Lash:Value Properties::Lash 1

Transmission 7

Wheel / T ire 2

73

7. Parametric Relationships

In systems engineering, design involves making decisions between solution

alternatives. Alternatives are most often compared and evaluated based on

engineering metrics, such as weight or performance. The general process is to

generate alternatives (ideation), evaluate alternatives (engineering analysis) and

finally, decide between alternatives (interpretation of results). SysML provides a

language to express and perform mathematical system analysis through

parametric diagrams. Parametric diagrams show mathematical relationships

between the blocks of the system model. They act as constraints on the system

design.

Sizing Inputs in System Model

The main benefit and purpose of the driveline sizing tool discussed in

Chapter 4 is to obtain impact torque definition and joint sizing. But it also serves

as an upfront component and system optimization tool for cost, weight, package

size and component quality. In effect, the sizing tool is a method for analysis

between different design solutions, meaning it is a perfect candidate for

modeling in a parametric diagram. If properly constructed, the SysML model can

perform the same basic functions of existing driveline sizing tools if it contains

the key interface parameters for the driveline system.

To perform driveline sizing within the SysML model it is important to define

the sizing calculation inputs as value properties within the model. These value

properties must be associated and linked to the correct logical constructions at

74

the sub-system and sub-component level. Table 7-1, Parametric Inputs to Sizing

Model defines the logical association for each required sizing input within the

model along with the correct value type. In SysML a value type is the unit of

measure. For our model we have elected to use SI units, though the existing Ford

Motor Company sizing tool uses English units.

Table 7-1, Parametric Inputs to Sizing Model

Parametric Input

Logical Block

Ownership

Value

Type
Vehicle Assumptions

Driveline Configuration (Type) Vehicle Inputs Pick List

Brake Traction Control Equipped Vehicle Inputs Yes / No

Max GVWR Vehicle Inputs Kg

Max Front GAWR Vehicle Inputs Kg

Max Rear GAWR Vehicle Inputs Kg

Max GCWR Vehicle Inputs Kg

Durability Road Load Data Set (RLD) Vehicle Inputs Pick List

Engine

Engine Torque in 1st Gear Engine N-m

Highest Engine Torque Available Engine N-m

Engine Torque in Rev. Gear Engine N-m

Engine Moment of Inertia Engine MMOI

Transmission

Transmission Type Transmission Pick List

1st Gear Torque Truncation Transmission N-m

2nd Gear Torque Truncation Transmission N-m

Transmission Efficiency Transmission Real #

Torque Converter Ratio @ Stall Transmission Real #

Torque Converter Ratio @ 0.5 Speed Ratio Transmission Real #

Transaxle FDR Transmission Real #

Flywheel Moment of Inertia - Manual Trans Transmission MMOI

Clutch Peak Torque Limiter - Manual Trans Transmission Real #

Number of Forward Gears Transmission Integer

1st Gear Ratio Transmission Real #

2nd Gear Ratio Transmission Real #

Reverse Gear Ratio Transmission Real #

Driveline

4x4 Transfer case type – Active/On Demand Transfer Case Pick List

4x4 Transfer case Max Coupler Torque Transfer Case N-m

Flex Coupling Equipped Driveshaft Yes / No

Total Driveshaft Stiffness Driveshaft N-m/rad

Highest Joint Angle @ Design Driveshaft Degrees

Rear Axle Ratio Axle Real #

Locking Differential Equipped Axle Yes / No

Wheels / Tires

High Rotational Inertia Tire Equipped Wheel/Tire Yes / No

Tire Size Wheel/Tire Pick List

Max Tire SLR Wheel/Tire Pick List

Tire Coefficient of Static Friction Wheel/Tire Real #

75

To be useful, these inputs must be associated or related to logical

constructions within our SysML model. Figure 7-1, SysML Diagram of Required

Inputs for Driveline Sizing illustrates the mapping of these needed parametric

inputs as value properties associated with logical blocks based on the property’s

logical ownership.

Figure 7-1, SysML Diagram of Required Inputs for Driveline Sizing

The impact torque sizing inputs are the value properties associated with the

appropriate logical blocks. For example, the value property Engine Torque in 1st

76

Gear is owned by the Engine logical block. Static Coefficient of Friction is

owned by the Wheel / Tire logical block. At logical architecture levels, these

value properties are to be defined variables that are not associated with any

specific engine or tire instance. They are defined later on as specific instances.

Parametric Constraint Modeling

One of the more useful modeling constructs offered in SysML is the

parametric constraint used in parametric diagrams. Parametric constraints specify

equivalence relationships between logical blocks. Figure 7-2, SysML Parametric

and Requirement Diagrams shows the relationship of parametric and

requirement diagrams in the overall context of all diagram types within SysML.

Parametric diagrams are a graphical means of representing mathematical or

logical relationships between model elements. They are defined in a similar

manner to IBDs, but they use internal relationships with constraint parameters

instead of part parameters. They are restricted to connecting only through

binding connectors, typically with a parametric constraint at one end of the

connection. Binding connectors imply equality.

77

Figure 7-2, SysML Parametric and Requirement Diagrams

The key element found on a parametric diagram is the constraint block,

which is used to constrain the properties of one or more other blocks. Constraint

blocks are owned by a Block Definition Diagram or Package Diagram.

Constraint blocks consist of constraints (any expression such as { � = � ∗ � })

and constraint parameters (such as τ, F and d). It is best to create each constraint

at the time you define the constraint block. An equation defined within the

constraint block can be any mathematical relationship (the constraint) between

variable properties (the parameters). Equations in constraint blocks govern the

relationship for the value properties of a model. A constraint parameter is used to

bind or connect a value property (an attribute owned by a block) from the outside

to a variable within the constraint equation (Paredis and Davies 2011).

Parametrics Relationships for Driveline Sizing

A goal of our SysML model was to show proof of concept for the calculation

of impact, yield and fatigue torques for driveline sizing. This required the

78

creation and integration of parametric relationships. We began by creating

individual constraint blocks to model the torque transfer physics of impact loads.

There are a total of eight different constraint blocks used to model impact torque,

consisting of torque flow equations, logic flow and Boolean assignments for

build content that can relate / display internal relationships to the parent

constraint block as well as other blocks through the binding connections.

Figure 7-3, SysML Parametric Diagram for Driveshaft represents the

driveshaft constraint block created and displayed in a parametric diagram. This

constraint takes the Boolean value for Flex Coupling Equipped and calculates the

flex coupling factor used in one impact torque calculation. The value for Flex

Coupling Equipped is one of the value properties found in Table 7-1, Parametric

Inputs to Sizing Model. The function returns the value 0.95 if the driveline has a

flex coupling and 1.0 if the driveline does not have a flex coupling.

Figure 7-3, SysML Parametric Diagram for Driveshaft

For our proof of concept sizing exercise, we aligned all input value

parameters to that of a proposed CD622 program, which provided us the

advantage of known values for verification. As seen in the driveshaft diagram,

79

Boolean assignments as well as logic flow can be handled in SysML through a

state of a system, which is specified in terms of the values of its properties. Thus

a change in state results in a different set of constraint equations to be

recalculated. This was accommodated by specifying unique constraints that are

conditioned on the value of the property (No Magic Inc. 2015b).

A parametric diagram was also created to represent / contain the overall

driveline sizing model for our IRS driveline instance application. The large

parametric diagram simultaneously displays individual constraint blocks as well

as their unique relationships between respective input values and other constraint

blocks, as well as all binding connections. The comprehensive IRS driveline

sizing parametric diagram is shown in Figure 7-4, SysML Parametric Diagram

for Impact Torque Calculation. This is a very complex, nested parametric that

requires inputs from six different logical blocks. Once again, all inputs are

captured in Table 7-1, Parametric Inputs to Sizing Model.

At this point instances are created to capture the potential powertrain inputs

based on program assumptions. Figure 7-5, SysML BDD for Powertrain

Instances shows the component instances defined to create the various

powertrain installations for our sizing proof of concept. We created three engine

models, two transmissions, two driveshafts, two tires, two axle ratios and two

sets of vehicle inputs to define three particular vehicle programs. Once the

blocks are created, the parametric input parameters are defined within the value

properties of the blocks. These specific component instances are used to build

80

and define powertrain instances based on the parametric diagrams constructed

for the IRS Powertrain.

Figure 7-4, SysML Parametric Diagram for Impact Torque Calculation

81

Figure 7-5, SysML BDD for Powertrain Instances

The component instances are used like interchangeable bricks to build up the

vehicle instances. The components are mixed and matched to create instances

based on the system engineer’s needs. Then a simulation is run to calculate the

various system outputs. SysML is capable of exporting the simulation results in

table form. Our three proof of concept runs are captured in Table 7-2, Instance

82

Table for Impact Torque Output. Each run of the simulation outputs the sizing

torques for driveshaft, axle and halfshaft.

Table 7-2, Instance Table for Impact Torque Output

Thus, with the adaptation of the driveline sizing tools into an MBSE

methodology, we have created what is effectively a real-time sizing tool that is

responsive and flexible enough to keep up with all design changes throughout the

product development process. As program inputs change, the driveline sizing

tool can automatically recalculate the outputs. If the outputs are then compared

against the component design criteria, such as comparing the calculated halfshaft

sizing torque against the designed halfshaft ultimate torque, SysML will

automatically flag any inconsistencies. If the program changes a tire size, thereby

changing the wheel slip torque, the modeling tool can be used to re-run

calculations to ensure the change does not impact the halfshaft, axle or driveshaft

useful life.

Notes on Modeling Parametric Diagrams

While we were able to complete the proof of concept for the parametric

modeling tool, it significantly stretched the limits of the MagicDraw software.

As of version 18.2, MagicDraw parametric diagrams did not support reference

properties and the team ran into several simulation bugs that prevented seamless

83

operation of the calculation tool. Due to software limitations, the simulation

could not progress more than two levels down in the system model. This required

the team to construct intermediate steps and made the parametric model

unnecessarily complex. It required significant effort and an upgrade to

MagicDraw version 18.3 Beta to get the model to export the sizing calculations

correctly, and even then it required significant engineering effort to store the

data. Some of these issues may have been due to the lack of experience we (and

our advisor) have with parametric modeling (MagicDraw is routinely used to

conduct complex simulations). However, it may also be due to our non-software

backgrounds and nuances in the simulation engine more apparent to engineers

with a programming background.

Consequently, our assessment is that the current release version of

MagicDraw is unsuitable for driveline sizing. However, there is no conceptual

roadblock preventing the incorporation of the sizing tool into a future version of

the SysML tool, once the software catches up to our modeling efforts. As

discussed earlier, MBSE is a developing field. The software tools available to

system engineers are being improved constantly and MagicDraw is already

working on allowing reference properties to be used in parametric simulations.

According to Mike Vinarcik, “MagicDraw routinely incorporates feedback from

users as it enhances capabilities and refines the user interface.” Companies that

are early adopters to SysML are likely to have significant influence in the

direction of future software development efforts, particularly in efforts to make

MBSE tools less opaque to non-programmers.

84

8. Benefits of Applied MBSE

Object oriented modeling was developed for and has traditionally been

applied to software applications, but this paper demonstrates that it can be

equally applicable to a fully mechanical system. Executing this project

demonstrated that MBSE can provide significant value and improved

effectiveness and efficiency when applied to typical automobile related systems

engineering problems.

In our limited application, we observed improvements in at least three areas.

We saw a reduction in requirement redundancy and consistency across all levels

of abstraction; streamlined communication of requirements by making all key

input and output parameters available to all model users; and the ability to

continuously update and manage component design inputs through parametric

relationships with vehicle level inputs.

It is important to note that this driveline system model was completed in just

nine weeks by three powertrain engineers with no previous SysML or

MagicDraw modeling experience. The MagicDraw application is reasonably

intuitive and the driveline system model’s complexity and scope increased as the

team’s familiarity and skill level grew. Learning the SysML language was fairly

straightforward, and even with minimal instruction the learning curve was quick.

This may have been due to the fact that SysML relationships are logically

consistent and make sense to the trained engineer.

85

Improved Communication

Our comprehensive SysML model provides a rational architecture for the

sizing and definition of the driveline system. It begins with the customer’s needs,

translates those into system requirements and delivers an efficient, optimized

solution that tracks and links all system requirements to defined test cases.

Implementation of MBSE will improve engineering productivity by linking

requirements across all sub-systems and improving tracking and communication

of requirement changes. The reduction of requirement redundancies and

automatic validation of test case verification could result in the elimination of

entire tracking departments in Ford Motor Company. Some other advertised

benefits of MBSE are improved design consistency, precision, traceability,

subsystem integration and design evolution (Pearce and Friedenthal 2013).

Sizing tools developed based on document-based requirements have

limitations on scalability. When there is a new vehicle level requirement

identified, the changes required to typical sizing tools can be extensive and not

easily accomplished without complete tear-up. New customer requirements may

drive new technology development and the implementation of this new

technology is a typical example. The physics equations or parametrics describing

the new technology or system usually cannot be directly integrated into a typical

sizing tool without extensive tear up and coding. In many cases this leads to

development of new sizing tools, which may or may not be compatible with

traditional systems. This can lead to the existence of multiple sizing tools which

can lead to confusion. In the case of a system model however, the new

86

requirement can be added, and the parametrics added into the SysML model

without much effort. This requirement is then cascaded throughout the system

making the process much smoother and it also ensures that every component

receives any updated or new requirement automatically.

Management of Requirements

MBSE supports requirement management through reduced redundancy,

better traceability and linkages between requirements and their methods of

verification. The MBSE implementation required significant upfront work to

define the logical structure of the mechanical system and the key interfaces.

Achieved through the process of logical decomposition, it proved valuable and

forced the team to question existing assumptions implicit in the existing

document based system engineering currently used at Ford.

Requirements are a key element in the success of a system and its

development and are considered by some authors to be “the cornerstone of

systems engineering” (Salado and Nilchiani 2014). During the elicitation process

of requirements, careful categorization to minimize overlap between them is

critical. It serves to better partition and bound the problem, while searching for

an optimal solution. Ensuring the adequacy of the problem definition should be a

critical step in the development process. Excessive specifications along with

overlapping of requirements will increase effort, time and the probability of

inconsistent information, while potentially reducing the solution space.

87

As mentioned earlier, the importation of over five-hundred driveline

requirements from a control document into the MBSE model required new

categorization into three-hundred unique requirements, better aligned to

behaviors and operations that define customer requirements. This was a

painstaking iterative process of elicitation refinement. But it also served to root

out excessive overlap of constraints in the current requirement lists, much of

which existed due to legacy information. As previously mentioned, these

constraints were often created piecemeal and at many different levels of

development, testing and verification. Through our integration efforts into

SysML categories, we discovered a clear need and benefit of improved

elicitation and partitioning of existing requirements. Improved management of

categorization models offers reduced redundancy, increased quality, and an

overall efficient systems engineered solution.

Parametric Input Cascade and Control

Through parametric relationships, top level assumption changes are

immediately cascaded down and can be verified against existing component

variable properties. If engine torque in first gear goes up, it will immediately be

calculated into transmission output torque and compared against the axle

maximum input torque limit. Changes in tire properties can be linked to and

compared against halfshaft joint design limits automatically. If the input

assumptions exceed design limits the SysML model will immediately throw an

error code to alert the system and component engineers that their attention is

88

required. All design data can be stored and managed in one place at an abstract

level.

Conclusion

This is believed to be the first application of model based mechanical

systems engineering at Ford Motor Company and was intended to be a test, or

proof of concept. Based on the success of our limited model, it is the authors’

opinion that MBSE will be a significant tool for future automotive system

designs. The state of SysML and MBSE appears to be similar to the

implementation of CAD applications in the 1980’s, or CAE in the 1990’s. The

MBSE market is slowly developing and SysML is beginning to penetrate

industry through early adopters. Effectively, MBSE is an emerging market that is

likely to grow in the future as its potential benefits are recognized by engineers.

Companies have not yet identified the benefits of model based system

engineering, but when they do, the market will explode. Companies are likely to

pursue enterprise implementations to reap the benefits in communication and

requirement management across their organizations. At Ford, it is likely that

SysML or something similar will be integrated into the existing Teamcenter

CAD/CAE tools. If history is any guide, early adopters are likely to absorb the

costs, but also guide the future development of this new technology.

89

References

Balmelli, Laurent. 2007. “An Overview of the Systems Modeling Language for

Products and Systems Development -- Part 3: Modeling System Behavior.”

Journal of Object Technology 6 (6): 149–77.

Carter, Mike (Ford Motor Company). 2015. “Rear Drive Housed Axle

Subsystem P-Diagram,” 2.

Delligatti, Lenny. 2013. SysML Distilled: A Brief Guide to the Systems Modeling

Language. Upper Saddle River, NJ: Pearson Education, Inc.

Kurt Niebuhr. 2014. “How-to-Choose-the-Right-Axle-Ratio-for-Your-Pickup-

Truck @ Www.edmunds.com.” Edmunds.com.

http://www.edmunds.com/car-buying/how-to-choose-the-right-axle-ratio-

for-your-pickup-truck.html.

No Magic Inc. 2015a. “Executive Overview: Accelerating The Model Driven

Enterprise.”

http://www.nomagic.com/files/brochures/letter/MagicDraw_ExecOverview

_2012.pdf.

———. 2015b. “SysML Plugin 18.1 User Guide.”

Operations, Technical. 2007. “Systems Engineering Vision 2020.” Systems

Engineering 1 (September).

Paredis, Chris, and Kevin Davies. 2011. “System Analysis Using SysML

Parametrics : Current Tools and Best Practices Acknowledgments.” Georgia

Institute of Technology Model Based Systems Engineering Center, 62.

https://openmodelica.org/images/docs/modprod2011-tutorial/modprod2011-

tutorial4-Chris-Paredis-SysML-Parametrics.pdf.

Pearce, Paul, and Sanford Friedenthal. 2013. “A Practical Approach For

Modelling Submarine Subsystem Architecture In SysML.” Submarine

Institute of Australia Science Technology & Engineering Conference.

Ryen, Ed. 2008. “Overview of the System Engineering Process Prepared by,” no.

March.

https://www.dot.nd.gov/divisions/maintenance/docs/OverviewOfSEA.pdf.

Salado, Alejandro, and Roshanak Nilchiani. 2014. “Categorizing Requirements

to Increase the Size of the Solution Space : Moving Away from NASA and

ESA ’ S Requirements Categorization Models.” In SECESA 2014, 9.

90

Stuttgart, Germany.

Seymour, Samuel J., and Steven M. Biemer. 2011. Systems Engineering

Principles and Practice. 2nd ed. Hoboken, NJ: John Wiley & Sons, Inc.

Wellmann, T., Govindswamy, K., Braun, E., and Wolff, K. 2007. “Optimizing

Vehicle NVH Characteristics for Driveline Integration,” 1–15.

http://www.fev.com/fileadmin/fev-

resources/Publications/NVH/Optimizing_Vehicle_NVH_Characteristics_for

_Driveline_Integration_01.pdf.

