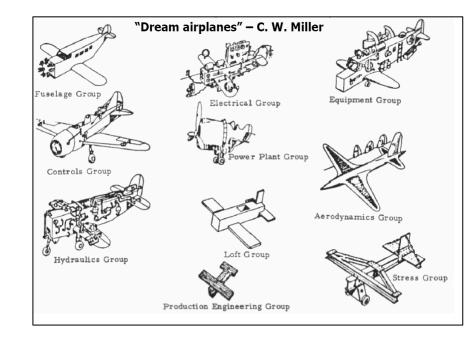
Application of Systems Engineering to Regulatory Compliance Activities for Medical Devices

Presented by Apoorv Maheshwari

INCOSE Healthcare MBSE Challenge Team: Modeling for a Healthy Future

Apoorv Maheshwari	Purdue University	
Michelle Lott	Lean RAQA Systems	
Robert J. Malins	Eagle Summit Technology Associates, Inc.	
Christophe Waterplas	ResMed Ltd.	
Jack Stein	Dynamic Solutions Institute, Inc.	
Ajay Thukral	Cientive Group	
C. Robert Kenley	Purdue University	
Daniel A. Delaurentis	Purdue University	

Outline


- About the Challenge Team
- Why MBSE?
- Objectives
- Approach
- Demonstration
- Lessons Learned
- Future Work

About the Challenge Team

- Mission
 - Demonstrate value and utility of MBSE in biomedical programs
 - Provide INCOSE members reference design to adopt for specific drug, device, and/or biological product development efforts.
- In 2014, finalized reference architecture using MagicDraw to develop SysML-compliant model drug delivery system
 - Requirements, structure, behavior, interfaces, parametrics
 - Emphasis on assurance of safety, reliability, usability, interoperability, and compliance with standards and regulations
- In 2015, added product development process model described in this presentation

Why do we need MBSE?

- Improved communication
 - Think about language barrier in a global team
- Improved understanding through logical models
 - Provide high level of abstraction
 - Reuse or design sharing
- Improved design of test cases
 - Weakness exposed in the model
- Easier verification
 - Model testing vs. just reviews
 - Leveling of requirements

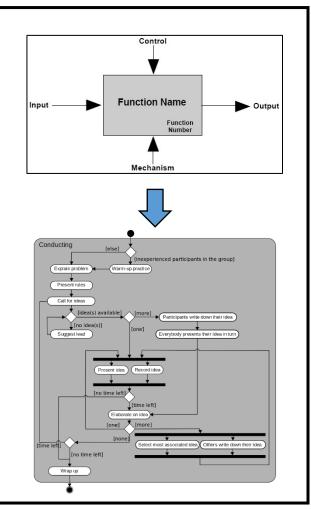
Objectives

- High-level
 - Demonstrate value and utility of MBSE in the biomedical-healthcare applications
 - Develop clear roadmap for biomedical device developers to integrate systems engineering activities with regulatory compliance activities
- Project-specific
 - Break the mold: Medical device industry is conservative, risk averse and continues to use well-established document-based processes
 - Safety Assurance: Demonstrate safety, addressing safety and addressing risk (pump recalls)
 - **Guidance Manual:** Assist user on key processes along with the reference pump model

Approach

- Follow Appendix B of Buede's 2009 textbook, The Engineering Design of Systems
- Harmonize with
 - ISO 15288: Systems and software engineering System life cycle processes
 - ISO 14971: Application of Risk Management to Medical Devices
 - IEC 62366-1: Application of Usability Engineering to Medical Devices
- Build on approach in 2015 INCOSE IS best paper "SysML Activity Models for Applying ISO 14971 Medical Device Risk and Safety Management Across the System Lifecycle"

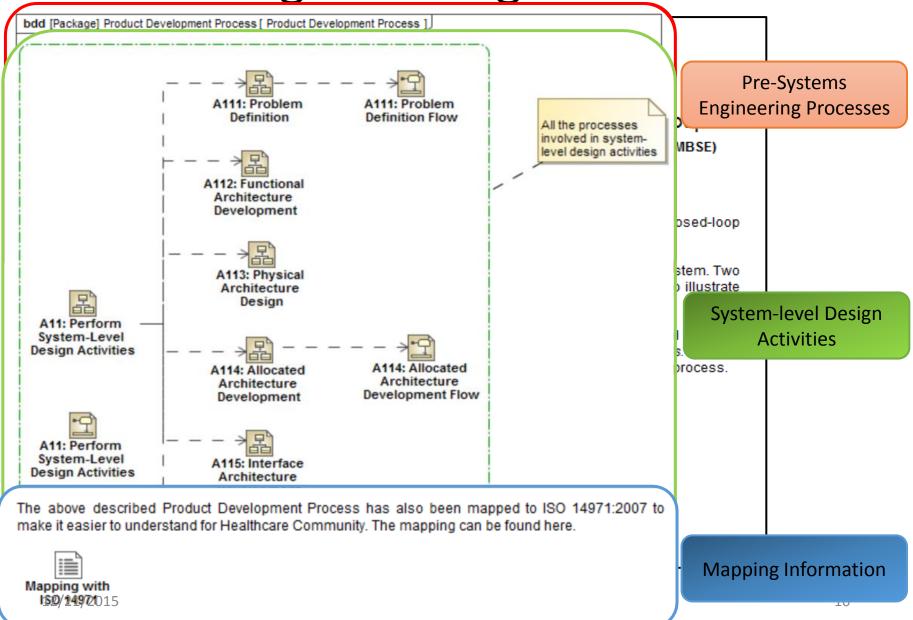
Reference Model for Infusion Pump

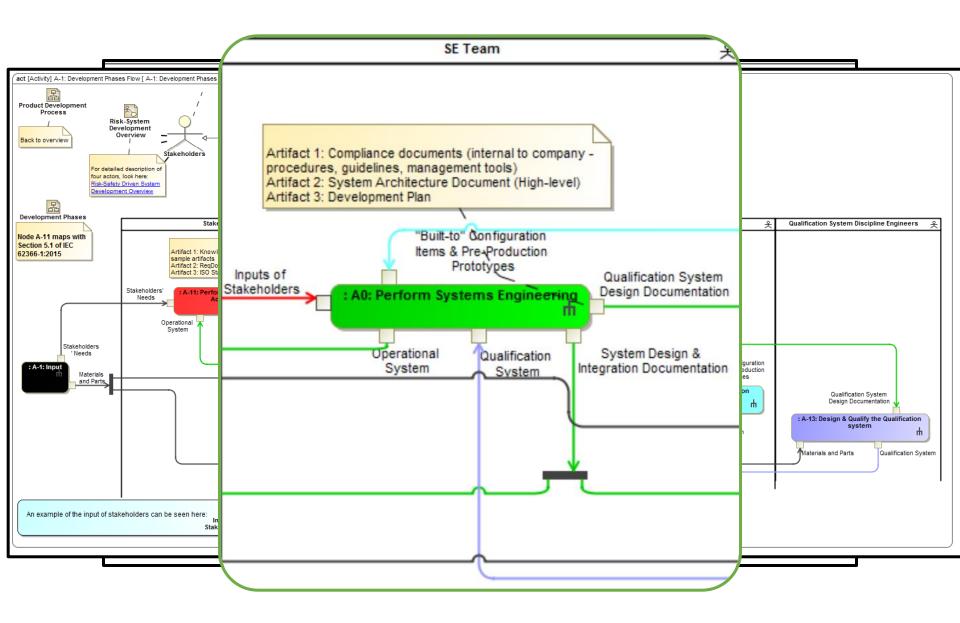

- Existing model completed in 2014 represents a generic infusion pump (drug delivery system) depicting:
 - Drug Delivery Requirements
 - Drug Delivery Structure
 - Behavioral Use Cases

An infusion pump is a medical device that delivers fluids, such as nutrients and medications, into a patient's body in controlled amounts.

Added Engineering Design of Systems

- Buede's textbook model for engineering design of a system converted from IDEF0 to SysML activity diagrams and linked to existing model
- Model can be accessed anywhere with an internet connection (read-only)




Demonstration

Can be accessed at:

http://web.ics.purdue.edu/~amaheshw/Infusion%20Pump/M odel_May20.html

Main Navigation Page

Example: Mapping ISO 14971

14971	Buede's Diagrams		
Risk Analysis Step	Produced by	Part of Artefact	Feeds to
Intended Use	A1111 Develop Operational Concept	System-level Operational Concept	
Identify characteristics related to safety	A1111 Develop Operational Concept	Preliminary Hazard Identification	System-level Operational Concept (using FDA guidance document, etc.)
	A112 Develop System Functional Architecture	Functional Hazards (from use cases)	System-level Final Architecture
	A113 Design System Physical Architecture	Physical Hazards (from use cases)	Physical Architecture
	A1142 Define & Analyze Functional Activation & Control Structure	Emergent Hazards from Activation & Internal Structure	Alternative-level Allocated Architecture
Risk estimation	A1143 Conduct Performance & Risk Analyses	Estimated Risks	Analysis Results
Risk Control	A1143 Conduct Performance & Risk Analyses	Risk Controls, Option Analysis	Architecture Changes
Risk Management 12/21/२१eport	A1144 Document Architectures and Obtain Approval	Risk Evaluation in Risk Management Report	Risk Analysis

Lessons Learned

• Differences in the vernacular terminology

• Pick the right problem

• Define the problem right

Future Work

- Parametric Modeling
 - Connect the SysML model with MATLAB

- Emergency Department
 - Focus: Diabetes Problem
 - Integrate infusion pump model to deliver insulin

Questions?

Abstract

• The INCOSE Biomedical-Healthcare Model-Based Systems Engineering (MBSE) Challenge Team has developed a reference model that uses SysML to represent a generic infusion pump and a systems engineering process for planning, developing, and obtaining regulatory approval of a medical device. This presentation describes recent updates to the model that incorporates Buede's textbook model for the engineering design of a system and harmonizes it with ISO 15288 and applicable medical device industry standards such as ISO 14971 Application of Risk Management to Medical Devices and IEC 62366-1 Application of Usability Engineering to Medical Devices. The model provides a clear roadmap that biomedical device developers can follow to integrate systems engineering activities with regulatory compliance activities to provide a more cohesive approach to developing effective and safe medical devices.