

REAL WORLD APPLICATION OF

MBSE AT BOMBARDIER TRANSPORTATION

Event: SWISSED 2015

Presenter: Omar Naas

Authors: Mohammad Chami, Philipp Oggier, Omar Naas, Matthias Heinz

Date: 08.09.2015

Place: Zurich Kongresshaus

Copyright © 2015 by Mohammad Chami.

Published and used by The SSSE and INCOSE with permission.

AGENDA

- 1 BOMBARDIER TRANSPORTATION
 - 2 SYSTEM ENGINEERING CHALLENGES & GOALS
- 3 MBSE AT BOMBARDIER TRANSPORTATION
- 4 LESSONS LEARNED
- 5 LOOKING FORWARD

Sombardier Inc. or its subsidiaries. All rights reserved.

BOMBARDIER Overview

Bombardier is the world's largest manufacturer of both planes and trains, with a worldwide workforce of **74,000*** people.

Bombardier is headquartered in Montréal, Canada. Our shares are traded on the Toronto Stock Exchange (BBD) and we are listed on the Dow Jones Sustainability World and North America indexes. In the fiscal year ended December 31, 2014, we posted revenues of **\$20.1** billion USD.

BOMBARDIER Our evolution

1942-1973

- Company start-up
- Development of passenger and personal snowmobiles
- Vertical integration
- Energy crisis provoked market collapse

1974-1985

- Diversification into mass transit market
- Learning of new industry
- 1982 New York metro contract secured strong position in American market

1986-1993

- Entry into aerospace through Canadair acquisition
- Consolidation of North American mass transit position and reinforcement of presence in Europe

Strategic Acquisitions

- Aerospace:
 Short Brothers
 (UK),
 Learjet (US), de
 Havilland (CA)
- Transportation:
 BN (BE),
 ANF (FR),
 Deutsche
 Waggonbau (DE),
 Concarril (MX),
 Talbot (DE),
 Adtranz (DE)

1993-2003

- CRJ Series, Global Express, Challenger 300
- Tilting train,
 AGC (Autorail
 Grande
 Capacité)
- Sale of Recreational products business unit

2003-

- CRJ NextGen family, Learjet 85, Q400 NextGen, CSeries, Global 7000, Global 8000
- Hybrid AGC, ZEFIRO, ECO4
- Transportation's expansion into emerging markets

System Engineering Challenges & Goals

combardier Inc. or its subsidiaries. All rights reserved

System Engineering Challenges & Goals

With respect to technology

Reduce development costs while increasing quality of the design artefacts.

Challenge

Goal

Complex products

Manage complexity

Distributed information sources

Share centralized information

Opportunistic, isolated reuse (copy past)

Managed, integrated reuse of development artifacts

Rombardiar Inc. or its subsidiarias. All rights reserved

System Engineering Challenges & Goals

With respect to people

Reduce development costs while increasing quality of the design artefacts.

Challenge

Goal

Distributed development

Enable collaboration

Multicultural teams

Improve correct understanding

Sombardier Inc. or its subsidiaries. All rights reserved

MBSE at Bombardier Transportation

Engineering Domains

ombardier Inc. or its subsidiaries. All rights reserved.

MBSE at Bombardier Transportation

BT System Modeling Method at a glance

The BT System Modeling Method describes **how** BT engineers shall analyze, define and represent their system of interest using a Model-Based Systems Engineering approach. The purpose of the method is to manage complexity and increase quality of the design artefacts to reduce development costs.

The BT System Modeling Method consists of three main tasks. Each of them to analyze the system of interest on a different abstraction level.

Operational Analysis

OA - main deliverables

- Context & scope
- Interactions between SOI¹ and actors
- SOI use cases including their detailed behavior

Functional Analysis

FA - main deliverables

- Functional architecture
- 2. System of interest decomposition
- 3. Allocation of Functional Blocks to the SOI's parts

Technical Analysis

TA - main deliverables

- Technical breakdown structure
- 2. Technical architecture
- Allocation of functional blocks to technical blocks

BT System Modeling Method – Operational Analysis Example

Definition of:

- Use cases
- Associated actors
- Use cases detailed behavior with their activities

BT System Modeling Method — Functional Analysis Example

Operational Analysis

Functional Analysis echnical Analysis

Definition of:

- Functional Blocks
- Functional Block behavior
- Interfaces between Functional Blocks
- Allocation of Functional Blocks to the subsystems

BT System Modeling Method – Technical Analysis Example

Operationa Analysis

Analysis

Technical Analysis

Definition of:

- Technical Blocks
- Technical Blocks breakdown
- Technical Blocks interfaces

ombardier Inc. or its subsidiaries. All rights reserved

MBSE at Bombardier Transportation

Integrated Engineering Approach

© Bombardier Inc. or its subsidiaries. All rights reserved

MBSE at Bombardier Transportation

Integrated Tool Chain

c. or its subsidiaries. All rights reserved.

MBSE at Bombardier Transportation

MBSE is an integrated approach – Example

Definition of safety attributes in Reliability Workbench based on requirement

Synchronized requirement in MagicDraw linked to use case

Change Analysis on Different System Hierarchy Levels

System Modeling Tool Criteria

MBSE Lessons Learned

Bombardiar Inc. or its subsidiarias. All rights reserved

MBSE Lessons Learned

Document-

Based System

Engineering

Provide practice oriented methods

Think big but start small

Provide suitable tools to do the job

Provide trainings, coaching and guidelines

Looking Forward

© Bombardier Inc. or its subsidiaries. All rights reserved.

Looking Forward

BT MBSE Targets

? Q&A

BOMBARDIER

the evolution of mobility