
UML Statechart Autocoding
for the

Mars Science Lab (MSL) Mission

Ed Benowitz
NASA/Jet Propulsion Laboratory

Caltech

Copyright 2012 California Institute of Technology. Government
sponsorship acknowledged.

Mars Science Laboratory Jet Propulsion Laboratory

Curiosity is on Mars now

Page 2

Mars Science Laboratory Jet Propulsion Laboratory

Statechart autocoding

• Generate flight code automatically from a state
machine diagram.

• The generated code has been part of Curiosity’s flight
software since launch, and continues to run onboard
today.

Page 3

Mars Science Laboratory Jet Propulsion Laboratory

Page 4

Process

smm_ai_state.xml

Developer draws
a statechart

in MagicDraw

Drawing tool
outputs an xml file

MSL statechart autocoder

smm_ac_state.c smm_ac_state.h

Autocoder generates
.c and .h files

Mars Science Laboratory Jet Propulsion Laboratory

Pros and Cons

• Advantages
– Code and documentation are always in sync
– More precise diagrams
– Easier to accommodate changes late in the game
– Encourages communication between systems, flight, test
– Forces the developer to consider off-nominal scenarios

• Cons
– Could be overkill for list-like state machines
– Drawing diagrams takes time

Page 5

Mars Science Laboratory Jet Propulsion Laboratory

Areas of Use

• Auto-maneuver (Cruise phase)
– High level state machines sending messages to the attitude

control system
– Handles retries, high-level off nominal situations
– Turns, acquire attitude knowledge, trajectory correction

maneuvers
– ~ 10 state charts intercommunicating
– ~ 100 states

Page 6

Mars Science Laboratory Jet Propulsion Laboratory

Areas of Use

• Spacecraft Modes
– ~ 50 states
– Configures the spacecraft when booting up
– Re-configures the spacecraft when changing modes

Launch mode

Cruise mode

Entry, descent, and landing mode

Rover mode

 Page 7

Mars Science Laboratory Jet Propulsion Laboratory

Page 8

Key Ideas

• Events are function calls

– mode_event_interruptA(StateMachine * machine);
– Can have additional arguments

• States are enumerated types
• Event functions contain switch statements

– Switch on the machine’s state enum.
• Composite states are flattened.

Mars Science Laboratory Jet Propulsion Laboratory

Example: Statechart

• This is a generic example statechart; it is not a flight state chart. The generated code shown on the next
slides comes from this example only, and is not flight code.

Page 9

StateChild
runChildEntry()entry /

StateA
runStateAEntry()entry /

Idle
runIdleEntry()entry /

StateB

Event2 / runCleanup()

Event2

 [condition_is_ok()]

Event1

Mars Science Laboratory Jet Propulsion Laboratory

Example Generated Code: .h

#ifndef MODULE_AC_STATE_H
#define MODULE_AC_STATE_H

#include <module/module_state_types.h>

typedef enum module_states {
 Idle,
 StateChild,
 StateB
} ModuleStates;

typedef struct module_machine {
 ModuleStates state;
} ModuleMachine;

void module_init_state(ModuleMachine * m);
void module_event_Event2(ModuleMachine * m);
void module_event_Event1(ModuleMachine * m);
void module_report_unrecognizeable_state(ModuleMachine * m);

#endif Page 10

Mars Science Laboratory Jet Propulsion Laboratory

Example Generated Code: .c

#include <module/module_ac_state.h>
#include <module/module.h>

void module_init_state(ModuleMachine * m) {
 ModuleMachine temp = *m;

 temp.state = Idle;
 runIdleEntry();
 *m = temp;
}

void module_event_Event2(ModuleMachine * m) {
 ModuleMachine temp = *m;

 switch(m->state) {
 case Idle:
 break;
 case StateChild:
 temp.state = Idle;
 runIdleEntry();
 break;
 case StateB:
 temp.state = Idle;
 runCleanup();
 runIdleEntry();
 break;
 default:
 module_report_unrecognizeable_state(m);
 }
 *m = temp;
}

Page 11

Mars Science Laboratory Jet Propulsion Laboratory

Example: Generated Code: .c

void module_event_Event1(ModuleMachine * m) {
 ModuleMachine temp = *m;

 switch(m->state) {
 case Idle:
 if(condition_is_ok()) {
 temp.state = StateChild;
 runStateAEntry();
 runChildEntry();
 }
 else {
 temp.state = StateB;
 }
 break;
 case StateChild:
 break;
 case StateB:
 break;
 default:
 module_report_unrecognizeable_state(m);
 }
 *m = temp;
}

 Page 12

Mars Science Laboratory Jet Propulsion Laboratory

Page 13

Inter-process communication

• State machines are independent of synchronization
mechanism

• Each state machine can only be used within one
thread

• If inter-process communication is used to
communicate between threads
– Upon receiving a message, send an event to a state

machine

Mars Science Laboratory Jet Propulsion Laboratory

Page 14

Autocoder Internal Architecture

Front End

State machine model

•Front end
•Builds the state machine model from
the XML file

MSL Back End

SIM Back End

•Back ends
•Traverse the state machine model
•Generate code

Thanks to Ken Clark for his work on the
front end and state machine model

Mars Science Laboratory Jet Propulsion Laboratory

Page 15

Supported features

• Simple states
• Transitions with

– Events
– Guards
– Actions

• Entry/Exit actions

Mars Science Laboratory Jet Propulsion Laboratory

Page 16

Supported features

• Internal transitons

• Self loops

• Junctions

Mars Science Laboratory Jet Propulsion Laboratory

Page 17

Supported features

• Composite states

• Orthogonal regions

Mars Science Laboratory Jet Propulsion Laboratory

Page 18

Key Restrictions

• Every transition must be started by an event
– No simple transitions with only a guard

• Don’t call event functions from within event functions
– May need to send a message to yourself via IPC instead

• Do not nest orthogonal regions

Mars Science Laboratory Jet Propulsion Laboratory

Page 19

Key Restrictions

• Avoid ambiguity
– Use junction in if/else configurations only to avoid ambiguity

– The autocoder does not guarantee which orthogonal region
executes first

– Don’t use the same event on multiple transitions from a
single state.

Mars Science Laboratory Jet Propulsion Laboratory

Page 20

Timers

SMM_TIMED_STATE
smm_start_timer()entry /

SMM_GOOD_STATE SMM_BAD_STATE

timeout

operationcomplete / smm_stop_timer()

SMM_TIMED_STATE

SMM_GOOD_STATE

SMM_BAD_STATE

after (5 * SECONDS)

operationcomplete

Not supported

Workaround

Mars Science Laboratory Jet Propulsion Laboratory

Some Lessons Learned

• Accommodated late-breaking requirements changes
• Statecharts were used outside of flight software

– Communicate with systems and ACS engineers
• Establish what should be implemented

– Test engineers
• Cover every path through the state charts

• What looks like a simple state machine grows larger
when off-nominal is added

• Style: Avoid orthogonal regions
– State chart becomes visually too large to see
– Determinism: Sending the same event to two regions

• Who runs first?
• Drawing tool formats change frequently.

Page 21

Mars Science Laboratory Jet Propulsion Laboratory

Some Lessons Learned

• When to use a statechart
– Branching, nesting, and looping

• When NOT to use a statechart
– When the state chart is a single chain

• Do not hand-edit auto-generated code
– Keep hand-edited and auto-generated code in separate files

• Getting project buy-in
– Get the project’s blessing on the generated code.
– Auto-generated code must strictly follow project coding

standards for acceptance.

Page 22

Mars Science Laboratory Jet Propulsion Laboratory

BACKUPS

Page 23

Mars Science Laboratory Jet Propulsion Laboratory

References

[I] N.F. Rouquette, T. Neilson, and 0. Chen, "The 13"‘ Technology of Deep Space
One", Proceedings of the 1999 IEEE Aerospace Conference, Vol 1, March 1999, pp.
477-487.

[2] K. Barltrop, E. Kan, J. Levison, C. Schira, and K. Epstein, "Deep Impact: ACS
Fault Tolerance in a Comet Critlcal Encounter", Advances in the Astronautical
Sciences, Vol. 1 1 1, 2002, pp. 1 1 1-1 26.

[3] Samek, M.. Practical Statecharts in C/C++, CMP Books, San Francisco, 2002.

[4] E. Benowitz, K. Clark, Watney. Auto-Coding UML Statecharts for Flight Software,
SMC-IT '06 Proceedings of the 2nd IEEE International Conference on Space
Mission Challenges for Information Technology, Pages 413-417.

http://mars.jpl.nasa.gov/msl/
All photos in this presentation came from the public JPL MSL web site.

Page 24

http://mars.jpl.nasa.gov/msl/
http://mars.jpl.nasa.gov/msl/

Mars Science Laboratory Jet Propulsion Laboratory

Page 25

Not supported

• Forks/joins
• History states
• Entry point/exit point/final state/terminate

	UML Statechart Autocoding �for the �Mars Science Lab (MSL) Mission
	Curiosity is on Mars now
	Statechart autocoding
	Process
	Pros and Cons
	Areas of Use
	Areas of Use
	Key Ideas
	Example: Statechart
	Example Generated Code: .h
	Example Generated Code: .c
	Example: Generated Code: .c
	Inter-process communication
	Autocoder Internal Architecture
	Supported features
	Supported features
	Supported features
	Key Restrictions
	Key Restrictions
	Timers
	Some Lessons Learned
	Some Lessons Learned
	Backups
	References
	Not supported

