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Curiosity is on Mars now 
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Statechart autocoding 

• Generate flight code automatically from a state 
machine diagram. 

• The generated code has been part of Curiosity’s flight 
software since launch, and continues to run onboard 
today. 
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Process 

smm_ai_state.xml 

Developer draws  
a statechart 

in MagicDraw 

Drawing tool 
outputs an xml file 

MSL statechart autocoder 

smm_ac_state.c smm_ac_state.h 

Autocoder generates  
.c and .h files 
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Pros and Cons 

• Advantages 
– Code and documentation are always in sync 
– More precise diagrams 
– Easier to accommodate changes late in the game 
– Encourages communication between systems, flight, test 
– Forces the developer to consider off-nominal scenarios 

• Cons 
– Could be overkill for list-like state machines 
– Drawing diagrams takes time 
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Areas of Use 

• Auto-maneuver (Cruise phase) 
– High level state machines sending messages to the attitude 

control system 
– Handles retries, high-level off nominal situations 
– Turns, acquire attitude knowledge, trajectory correction 

maneuvers 
– ~ 10 state charts intercommunicating 
– ~ 100 states 
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Areas of Use 

• Spacecraft Modes 
– ~ 50 states 
– Configures the spacecraft when booting up 
– Re-configures the spacecraft when changing modes 

Launch mode 
 
 
 
Cruise mode 
 
 
 
Entry, descent, and landing mode 
 
 
 
Rover mode 
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Key Ideas 

 
• Events are function calls 

– mode_event_interruptA(StateMachine * machine); 
– Can have additional arguments 

• States are enumerated types 
• Event functions contain switch statements 

– Switch on the machine’s state enum. 
• Composite states are flattened. 
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Example: Statechart 

• This is a generic example statechart; it is not a flight state chart.  The generated code shown on the next 
slides comes from this example only, and is not flight code. 
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StateChild
runChildEntry()entry / 

StateA
runStateAEntry()entry / 

Idle
runIdleEntry()entry / 

StateB

Event2 / runCleanup()

Event2

 [condition_is_ok()]

Event1
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Example Generated Code: .h 

#ifndef MODULE_AC_STATE_H 
#define MODULE_AC_STATE_H 
 
#include <module/module_state_types.h> 
 
typedef enum module_states { 
   Idle, 
   StateChild, 
   StateB 
} ModuleStates; 
 
typedef struct module_machine { 
   ModuleStates state; 
} ModuleMachine; 
 
void module_init_state(ModuleMachine * m); 
void module_event_Event2(ModuleMachine * m); 
void module_event_Event1(ModuleMachine * m); 
void module_report_unrecognizeable_state(ModuleMachine * m); 
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Example Generated Code: .c 

#include <module/module_ac_state.h> 
#include <module/module.h> 
 
void module_init_state(ModuleMachine * m) { 
   ModuleMachine temp = *m; 
 
   temp.state = Idle; 
   runIdleEntry(); 
   *m = temp; 
} 
 
void module_event_Event2(ModuleMachine * m) { 
   ModuleMachine temp = *m; 
 
   switch(m->state) { 
      case Idle: 
         break; 
      case StateChild: 
         temp.state = Idle; 
         runIdleEntry(); 
         break; 
      case StateB: 
         temp.state = Idle; 
         runCleanup(); 
         runIdleEntry(); 
         break; 
      default: 
         module_report_unrecognizeable_state(m); 
   } 
   *m = temp; 
} 
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Example: Generated Code: .c 

void module_event_Event1(ModuleMachine * m) { 
   ModuleMachine temp = *m; 
 
   switch(m->state) { 
      case Idle: 
         if(condition_is_ok() ) { 
            temp.state = StateChild; 
            runStateAEntry(); 
            runChildEntry(); 
         } 
         else { 
            temp.state = StateB; 
         } 
         break; 
      case StateChild: 
         break; 
      case StateB: 
         break; 
      default: 
         module_report_unrecognizeable_state(m); 
   } 
   *m = temp; 
} 
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Inter-process communication 

• State machines are independent of synchronization 
mechanism 

• Each state machine can only be used within one 
thread 

• If inter-process communication is used to 
communicate between threads 
– Upon receiving a message, send an event to a state 

machine 
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Autocoder Internal Architecture 

Front End 

State machine model 

•Front end  
•Builds the state machine model from 
the XML file 

MSL Back End 

SIM Back End 

•Back ends  
•Traverse the state machine model 
•Generate code 

Thanks to Ken Clark for his work on the 
front end and state machine model 
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Supported features 

• Simple states 
• Transitions with 

– Events  
– Guards 
– Actions 

• Entry/Exit actions 
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Supported features 

• Internal transitons 
 
 
 
 

• Self loops 
 

• Junctions 
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Supported features 

• Composite states 
 
 
 
 
 

 
• Orthogonal regions 
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Key Restrictions 

• Every transition must be started by an event 
– No simple transitions with only a guard 

• Don’t call event functions from within event functions 
– May need to send a message to yourself via IPC instead 

• Do not nest orthogonal regions 



Mars Science Laboratory Jet Propulsion Laboratory 

Page 19 

Key Restrictions 

• Avoid ambiguity 
– Use junction in if/else configurations only to avoid ambiguity 

 
 
 
 
 
 
 

– The autocoder does not guarantee which orthogonal region 
executes first 

– Don’t use the same event on multiple transitions from a 
single state. 
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Timers 

SMM_TIMED_STATE
smm_start_timer()entry / 

SMM_GOOD_STATE SMM_BAD_STATE

timeout

operationcomplete / smm_stop_timer()

SMM_TIMED_STATE

SMM_GOOD_STATE

SMM_BAD_STATE

after (5 * SECONDS)

operationcomplete

Not supported 

Workaround 
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Some Lessons Learned 

• Accommodated late-breaking requirements changes  
• Statecharts were used outside of flight software 

– Communicate with systems and ACS engineers 
• Establish what should be implemented 

– Test engineers 
• Cover every path through the state charts 

• What looks like a simple state machine grows larger 
when off-nominal is added 

• Style: Avoid orthogonal regions 
– State chart becomes visually too large to see 
– Determinism: Sending the same event to two regions 

• Who runs first? 
• Drawing tool formats change frequently. 
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Some Lessons Learned 

• When to use a statechart 
– Branching, nesting, and looping 

• When NOT to use a statechart 
– When the state chart is a single chain 

 
 

• Do not hand-edit auto-generated code 
– Keep hand-edited and auto-generated code in separate files 

• Getting project buy-in 
– Get the project’s blessing on the generated code. 
– Auto-generated code must strictly follow project coding 

standards for acceptance. 
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BACKUPS 
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http://mars.jpl.nasa.gov/msl/ 
All photos in this presentation came from the public JPL MSL web site. 
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Not supported 

• Forks/joins 
• History states 
• Entry point/exit point/final state/terminate 
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