
Intel® CoFluent™
Methodology for SysML*
UML* SysML* MARTE* Flow for Intel® CoFluent™ Studio

An Intel® CoFluent™ Design White Paper By Thomas Robert and Vincent Perrier

www.cofluent.intel.com

Acronyms and abbreviations

BDD Block Definition Diagram

CPU Central Processing Unit

DSL Domain-Specific Language

HW Hardware

IBD Internal Block Diagram

IC Integrated Circuit

IP Intellectual Property

MARTE* Modeling and Analysis for Real-Time and Embedded systems

SW Software

SysML* Systems Modeling Language

TLM Transaction-Level Modeling

UML* Unified Modeling Language

Abstract

SysML is a UML profile that allows the creation of standard descriptions of a system. However,

this profile is too generic to address embedded and real-time system design. The MARTE UML

profile attempts to fill this gap by providing elements from both embedded software and

hardware engineering. Unfortunately, it remains mainly descriptive in nature, since no

commercial tools are available to simulate the models and extract performance data.

Intel® CoFluent™ technology offers methodology for SysML to provide comprehensive

framework and guidelines for joint use of SysML and MARTE. The methodology offers

simulation of multicore/multiprocessor hardware/software embedded system and chip models,

enabling designers to observe the system behavior and analyze performance properties. The

methodology delivers modeling rules and method with tool support.

Intel® CoFluent™ technology’s tool support includes:

- Intel® CoFluent™ technology UML profile extending UML 2.4, SysML 1.3 and MARTE 1.0

profiles

- Integration with leading UML modeling environments

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 2

- Link to Intel® CoFluent™ technology’s Intel® CoFluent™ Studio SystemC 2.3-based

simulation environment for model execution and extraction of performance figures

The link to Intel® CoFluent™ Studio is achieved by model transformation from SysML to Ecore-

based internal model description. The methodology for SysML complies with Intel® CoFluent™

Studio’s embedded system architecting flow and the MARTE profile’s intent that separates the

application or functional view from the execution platform view. The execution platform view is

often called the hardware resource view.

Hardware/software partitioning is described in a mapping or allocation view, and the resulting

allocated view represents the actual embedded software threads executing on the various cores

and operating systems that constitute the hardware and firmware. The resulting allocated view

is a “virtual system”, since it encompasses the full hardware/software system.

Existing virtual platform and virtual prototype environments require the assembly of detailed

intellectual property block models. Intel® CoFluent™ technology’s virtual system modeling and

simulation technology overcomes many of the limitations of virtual platforms since it can be

executed before detailed hardware intellectual property block models and embedded software

are available. Thus, it removes the inherent limitations due to the availability of the models or

their important development time and associated cost. The Intel® CoFluent™ technology also

goes beyond traditional UML simulation that does not take into consideration architectural and

non-functional performance dimensions such as thread priorities and scheduling, time

constraints, bus transactions, memory accesses, power consumption, memory footprint, cost,

etc. Virtual systems provide fast and accurate evaluation of various use cases and design

scenarios by executing SysML specifications and predicting the behavior, performance and

power consumption. Accurate prediction is critical for multicore and low-power designs.

Intel® CoFluent™ Studio with SysML support enables system designers to store and exchange

design information internally and between third parties in a standard format. It allows the

delivery of executable specifications and SystemC test cases for further system validation with

SystemC-based virtual platform environments.

» Prerequisite:

» Acknowledgement:

The reader is assumed to have a basic knowledge of UML, SysML and MARTE technologies
in order to fully understand this white paper.

SysML models shown in screenshots were captured with No Magic’s MagicDraw* tool.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 3

Table of Contents

1 Introduction ... 3

2 Model Packaging ... 5

3 Application Modeling ... 7

3.1 Structure .. 7

3.2 Behavior ... 11

3.3 Intel® CoFluent™ Application Profile .. 12

3.4 Tools: UML Modelers and Intel® CoFluent™ Studio Integration 12

3.4.1 MagicDraw* .. 12

3.4.2 Papyrus* .. 13

4 Platform Modeling .. 16

5 Allocation .. 18

5.1 Allocated Model Execution in Intel® CoFluent™ Studio 19

6 Conclusion ... 21

Table of Figures
Figure 1: Package diagram of the model .. 6

Figure 2: BDD of the application Leaf functions and relations appear as

properties in the lowest-level containers ... 8

Figure 3: Leaf functions defined in Functions package ... 8

Figure 4: IBD of the application .. 9

Figure 5: Port type definition ... 10

Figure 6: SysML activity diagram .. 11

Figure 7: Intel® CoFluent™ Studio with integrated MagicDraw 13

Figure 8: Intel® CoFluent™ Studio behavioral model simulation results 14

Figure 9: Blocks defined in Components package .. 16

Figure 10: Composite diagram of the platform .. 17

Figure 11: Assignments for application to platform mapping 18

Figure 12: Allocated model simulation timeline .. 19

Figure 13: Performance profiling windows in Intel® CoFluent™ Studio 20

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 4

1 Introduction

This paper presents the Intel® CoFluent™ methodology for SysML and associated tool support.

The methodology is based on UML with SysML and MARTE profiles. It allows automatic model

transformation from this format to the Intel® CoFluent™ technology DSL.

The methodology can be seen as a set of modeling rules and restrictions applied to

SysML/MARTE. These rules enable the simulation of multicore/multiprocessor

hardware/software system models for behavioral and performance data prediction, without

restricting the expressiveness of SysML and MARTE. The Intel® CoFluent™ methodology for

SysML does not add new elements to standard profiles. It does, however, offer an optional

profile to represent several features related to Intel® CoFluent™ DSL and necessary for efficient

embedded system modeling and simulation.

An “Audio Video Player” example model is used to illustrate the design flow. This model is a

high-level description of an audio-video decoder running on a generic platform. The generic

platform consists of a processor and hardware accelerator.

» Throughout this paper, the following typographic rules are applied:

 Specific UML / SysML / MARTE words are displayed in a different font. Example:

block.

 Names of model elements (property names, block names, package names…) and

profile elements are displayed in italic. Example: Functions.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 5

2 Model Packaging

The model packaging reflects the separation between application and platform models. The

application or functional model includes elements of the environment generating stimuli for

system simulation under specific use scenarios or use cases. The application model is mapped

onto the platform model to add generic physical constraints. The result is a refined virtual

system model.

 Functional architecture describes applicative structures with timed behaviors. Functions

execute in full parallelism. They synchronize through events and exchange data.

 Physical architecture describes a generic execution platform, including processing units

such as a CPU or IC, physical links such as bus or routing network, storage units

including memories, and firmware such as schedulers. In this view, the platform is

“empty” in the sense that CPUs execute no instructions and ICs are not yet wired with

logic.

 Virtual system architecture is the result of the mapping step, which consists in

allocating functions to processing units, data to storage units, and routing inter-

processor data on physical links. The mapping or allocation can be seen as a model

itself. The obtained virtual system model is the functional architecture with execution

constraints such as scheduling, bus arbitration and memory size.

Packaging is also important to maximize both reuse and model readability. Figure 1 shows the

proposed package hierarchy.

Figure 1: Package diagram of the model

The package named Functions contains functions of the application model. These may be

reused in other models. ComponentsLib contains components of the platform model, which

also may be reused in other models. Application and Platform packages contain models

themselves. The Allocation package contains the allocation model, using elements from

application and platform models.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 6

Two other packages can be defined containing the data types and the functional relations

(data communication and synchronization elements between functions). It is merely illustrative

packaging, since only Application, Platform and Allocation packages are mandatory.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 7

3 Application Modeling

The application model is a set of functions exchanging data and/or synchronizing through

events, shared variables and message queues. Functions can be internal to the system under

design or pertain to the environment and thus, contribute to exercising the chosen use case

scenario by interacting with the system under a stimuli/responses scheme. There are two

different aspects in an application model:

- The structural aspect encapsulates the different functions and the relations, or data

paths, between them.

- The behavioral aspect is the control flow used to process data and synchronize

functions.

3.1 Structure
Functions encapsulating other functions are called “container functions”. Functions defined at

the lowest hierarchical levels are called “leaf functions”.

A SysML internal block diagram (IBD) is used to represent the applicative structure of

the system. A top-level SysML block is used as a root container.

Functions of the lower hierarchical level are all properties of the top-level blocks. Blocks

appearing in the Application package, or in an imported package, define the types of these

properties. Sub-functions of these blocks are also represented as properties, and so on.

The block definition diagram (BDD) in Figure 2. shows the functional hierarchy. This

representation is not required in order to correctly represent the Intel® CoFluent™ technology

model: an IBD is sufficient. However, a BDD aids in understanding functional hierarchy in the

application, particularly the distinction between leaf and container functions. Moreover, a BDD is

compliant to existing SysML modeling methodologies and most of the designers feel more

comfortable having both a BDD and an IBD.

Figure 2: BDD of the application

Leaf functions and relations appear as properties in the lowest-level containers

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 8

Figure 3 shows the leaf functions, which are the lowest hierarchical level functions defined in

Functions package of the SysML model.

Figure 3: Leaf functions defined in Functions package

Using these blocks as types for the container functions properties enables reuse, as other

properties could be typed with these blocks. The blocks can be reused in the same model

or in other application models.

The connections between application elements are represented in the IBD of the top-level

block, named AppliStruct for the example as shown in Figure 4.

Figure 4: IBD of the application

Relational elements are represented by properties with two input and output ports. The

types of these properties are SysML blocks defined in the FunctionalRelations package

with the following stereotypes from MARTE profile:

- NotificationResource: Event enabling synchronization between functions.

Equivalent to Intel® CoFluent™ technology “event”.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 9

- SwMutualExclusionResource with SharedDataComResource: Shared variable

enabling asynchronous data read/write. Equivalent to Intel® CoFluent™ technology

“shared variable”.

- MessageComResource: Enables synchronous buffered data exchanges. Equivalent to

Intel® CoFluent™ technology “message queue”.

There are assembly connectors between ports of different properties. Delegation

connectors are used for ports forwarding between external and internal functions.

Data types are defined by blocks in the Application package or imported from other

packages. The data types are carried by the ports. Ports are MARTE* FlowPorts, with

directions in, out, inout.

Figure 5 shows the type of the selected flow port. Here, the data type DefAudioBuffer is a

block defined in the DataTypes package.

Figure 5: Port type definition

As shown on the IBD, application is composed of three main parts:

- scenarioController, shown in the bottom left corner, provides the videoSequence and

controls execution of video and MP3 players.

- videoPlayer, shown at the top, decodes videoSequence.

- mp3Player, shown at the bottom, decodes the MP3 encoded sound contained in

videoSequence.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 10

» Important note about stereotypes application:

3.2 Behavior
Leaf function types are blocks that can contain a behavior. An activity diagram can

describe this behavior.

Placing the activity under the block in the hierarchy of the SysML model is sufficient to

express that the activity is representing the behavior of the block. However, this link can

be explicitly described by setting the ClassifierBehavior property of the block.

Figure 6 depicts an example of an activity, MP3DecoderAct.

Figure 6: SysML activity diagram

Inputs and outputs of the activity are activity parameter nodes, allocated to

Models described in this document make an extensive use of MARTE stereotypes. It is

also possible to apply optional Intel® CoFluent™ technology stereotypes.

Stereotypes applied to blocks may be also applied to properties typed by these

blocks. Stereotypes can even be applied only to properties. For instance, it is

possible to apply a stereotype to a property of a container function in the application

model, independently from the stereotype applied to the block defined in the function

library as type of the property.

If both block and property are stereotyped with the same stereotype, tagged values

from the property will be used when transforming to the Intel® CoFluent™ model.

Opaque Action

Opaque Action

with Input Pin

Decision Node

Activity

Parameter Node

Guard

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 11

corresponding ports of the application structure via the MARTE Allocate stereotype.

Input and output pins allow read/write on ports in behaviors. Opaque actions model

operations to be performed, for example data read/write and processing. Decision

node/fork and join/fork and merge can be used in the control flow description. In Figure 6,

the first decision node represents an infinite loop, whereas the second is a loop with

condition, where LoopIndex < NbSamples.

For opaque actions, the MARTE stereotype TimedProcessing can be used in order to

set operation duration. C/C++ is used as action language. Code can also be added in opaque

action body for SystemC-based simulation within Intel® CoFluent™ Studio after model

transformation.

3.3 Intel® CoFluent™ Application Profile
Use of the Intel® CoFluent™ profile is optional. The Application package of the profile allows

accessing the following specific features.

 Specific model element attributes including read and write times for relations and

specific Intel® CoFluent™ functions such as sampled function, clock generator, divider,

message routing function.

 Specific C/C++ code: global declarations, pre-processing and post-processing code,

local declarations for each function, and type definitions.

 Design parameters: they are used to change values in the model at simulation time.

There are four stereotypes for design parameters: EnumerationDP for enumerations, SetDP

for sets, RangeDP for ranges and VariableDP for variables.

In order to add a design parameter to the SysML model, the parameter must first be defined

with a block to which the right stereotype is applied. Then, attribute values of the

parameter can be set. Lastly, a property must be added in the block to which the parameter

is applied. The type of this property is the generic parameter block previously defined. If the

generic parameter is global, a property typed by the generic parameter block must be added

to the root block of the application.

3.4 Tools: UML Modelers and Intel® CoFluent™ Studio Integration

3.4.1 MagicDraw*

The Intel® CoFluent™ Application profile and associated Intel® CoFluent™ technology plugin

are currently available for No Magic’s MagicDraw UML modeling tool.

The SysML/MARTE application model can be captured in MagicDraw and then imported from

Intel® CoFluent™ Studio. MagicDraw can also be directly integrated into Intel® CoFluent™ Studio

as an Eclipse* plugin, with one-click integration for the user, in order to work within a single

modeling environment.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 12

Figure 7: Intel® CoFluent™ Studio with integrated MagicDraw

MagicDraw customization has been developed to ease the modeling guidelines application and

the Intel® CoFluent™ profile usage. A MagicDraw validation module for Intel® CoFluent™

technology is available to ensure that the SysML/MARTE model is compliant to the

methodology and can be transformed into an Intel® CoFluent™ model. All these elements are

part of the Intel® CoFluent™ plugin for MagicDraw.

3.4.2 Papyrus*

The Intel® CoFluent™ profile, which includes Application, Platform and Allocation packages, is

also available for the Papyrus UML modeling environment. However, a Papyrus to Intel®

CoFluent™ Studio model transformation is not commercially available.

3.5 Application Model Execution in Intel® CoFluent™ Studio
The SysML/MARTE application model can be automatically transformed into an Intel®

CoFluent™ model. The transformation is implemented with Java and the Eclipse Modeling

Framework (EMF). The output is a tool-compatible model compliant with Intel® CoFluent™ meta-

model. The meta-model in turn conforms to Ecore, Eclipse’s Meta-Object Facility (MOF).

In Intel® CoFluent™ Studio, the obtained Ecore* model is used to automatically generate a

SystemC TLM model that includes the user-defined C/C++ code. The generated code uses Intel®

CoFluent™ SystemC 2.3 and TLM 2.0-based simulation library. SystemC models can be

generated for various environments such as OSCI SystemC library, CoWare, Synopsys

Innovator*, Synopsys System Studio*, and Mentor Graphics Questa*. This feature enables reuse

of Intel® CoFluent™-generated SystemC models as test cases for further verification and

validation within a wide range of virtual platform environments.

Once the SystemC model is generated and compiled, the model can be run to extract

behavioral and timing information. Deadlocks or conflicts in data accesses can be identified.

Latencies can be measured. It is also possible to change generic parameter values and see how

the changes impact model execution.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 13

Figure 8 shows the model simulation results in Intel® CoFluent™ Studio.

» Current tool support:

Figure 8: Intel® CoFluent™ Studio behavioral model simulation results

The user monitors the activity of the different functions, as well as the data exchanges between

the functions, in the timeline window. With this feature, the user can clearly recognize the

messages that are sent to the two players. The different functions and message queues related

to the MP3 player are represented in the lower part of the window. The video player is located

in the upper part.

The Intel® CoFluent™ Studio timeline is similar to a UML sequence diagram displayed

horizontally (time runs from left to right). It offers additional capability as well. The state of each

function, running, blocked, and idle, can be observed and analyzed in detail. Computation and

data read/write transaction durations can be precisely observed since the model execution is

fully timed.

The Console view displayed below the timeline in Figure 8 is used to print text information

during the simulation. Just as software programmers that can add print statements in their

code for printing information during the program execution, users can also monitor and print

out information during the simulation execution in this window.

Intel® CoFluent™ Studio v5.1 supports application modeling and simulation with SysML.

Platform model and mapping are captured using the Intel® CoFluent™ DSL.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 14

Image processing on the right side of the screen in Figure 8 shows the different steps of image

processing through the video channel. The first picture represents the input picture that is

processed and the second one the videoOutput. It is also possible to plot variables against the

execution time to monitor their values, such as audio output level of the mp3Player in the

window shown in the lower right section of the screen.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 15

4 Platform Modeling

The platform is a set of computation and storage resources connected by physical links. It is

represented using Hardware Resource Model from MARTE profile.

The platform structure is described by an IBD. A top-level SysML block is used as a root

container.

Components of lower hierarchical levels are properties of the top-level blocks. Types of these

properties are defined by MARTE stereotyped blocks, appearing in the Platform

package or in an imported package. Sub-functions of these blocks are also represented as

properties, and so on.

Schedulers can be allocated to MARTE HwProcessor using the MARTE allocate

stereotype. The schedulers are defined as blocks stereotyped with MARTE GaExecHost.

Figure 9 depicts blocks defined in the imported Components package. The MARTE

stereotype used for each one is visible. The package contains computation resources

(UserComputer, CoProcessor), communication resources (Bus, USB, SPI), memories (DisplayEnv,

Source, Mem) and a scheduler (Scheduler).

Figure 9: Blocks defined in Components package

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 16

Figure 10 depicts the IBD of the platform. Ports are MARTE hwEndPoints. Assembly

connectors are used to connect end points to buses. Delegation connectors are used

for ports forwarding between different hierarchical levels. Schedulers are allocated to hardware

processors using Assign stereotype from MARTE.

Figure 10: Composite diagram of the platform

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 17

5 Allocation

To obtain an allocated virtual system model, functions of the application are mapped onto

computation resources of the platform, while shared variables and exchanged data are mapped

onto memories and physical links. Assign from MARTE profile is used to model this mapping

or allocation.

Software mapping is achieved by assigning functions from the application to tasks (blocks

stereotyped with MARTE schedulable resource). The schedulers of the platform schedule

tasks.

Hardware mapping is done by directly assigning functions to ICs of the platform.

Link mapping is the allocation of functional relations to physical links or memories of the

platform.

Figure 11 shows the different assignments for the example model.

Figure 11: Assignments for application to platform mapping

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 18

5.1 Allocated Model Execution in Intel® CoFluent™ Studio
Figure 12 illustrates the obtained timeline for the allocated, or architecture, model simulation in

Intel® CoFluent™ Studio. The descriptions were created with Intel® CoFluent™ DSL.

Figure 12: Allocated model simulation timeline

Unlike results available for the behavioral simulation, the model execution results include the

activity of the processors, busses and interfaces. This feature is useful to evaluate if resources

of the system under study are overloaded. It also will help determine if the software partitioning

is adequately done. Additionally, the ability of a software-processing unit to perform several

tasks and the impact of a bus to transfer can be monitored.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 19

Figure 13 shows the performance profiling windows obtained at the end of the simulation. The

first window displays a global results table, and the second window displays the dynamic load

of selected resources.

Figure 13: Performance profiling windows in Intel® CoFluent™ Studio

Performance profiling results include power, resource utilization (loads in percentage of

Mcycles/s), and memory. For instance, the simulation indicates a CPU use of 70.84% and a Bus

use of 56.26%.

If the CoProcessor was not used and all the functions were mapped onto the CPU, the CPU

utilization would increase and the bus utilization would decrease. This kind of mapping change

is easily done in Intel® CoFluent™ Studio, enabling fast “what if” analysis.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 20

6 Conclusion

This paper describes an embedded system architecting flow that utilizes virtual system models

obtained from SysML/MARTE specifications. The specifications are translated into executable

SystemC transaction-level models. Virtual system technology overcomes many of the

limitations of virtual platforms, since it is accessible when specialized hardware and software IP

models or code are not yet available. It provides the simulation capability for performance

analysis, behavioral and architectural verification, and use cases and tradeoff analysis.

The use of standard notations of SysML/MARTE profiles to describe virtual systems enables

system architects to store and exchange design information internally and between third

parties in a standard format. Furthermore, virtual systems allow fast and accurate evaluation of

different use cases and design scenarios by allowing the execution of SysML specifications.

Automatic SystemC TLM code generation allows reusing models in other SystemC-based virtual

platform and verification environments.

Intel® CoFluent™ Methodology for SysML SysML MARTE Flow for Intel® CoFluent™ Studio 21

Intel Corporation

Robert Noyce Building

2200 Mission College Blvd.

Santa Clara, CA 95052-8119

USA

Intel Corporation SAS

Les Montalets

2 rue de Paris

92196 Meudon cedex

France

Phone: +33 158 877 115

Fax: +33 158 877 000

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors.

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations

and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance

tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with

other products.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate

performance of Intel products as measured by those tests. Any difference in system hardware or software design or configuration may

affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components

they are considering purchasing. For more information on performance tests and on the performance of Intel products, visit

www.intel.com/performance/resources/limits.htm or call (U.S.) 1-800-628-8686 or 1-916-356-3104.

All dates and products specified are for planning purposes only and are subject to change without notice.

Relative performance for each benchmark is calculated by taking the actual benchmark result for the first platform tested and assigning

it a value of 1.0 as a baseline. Relative performance for the remaining platforms tested was calculated by dividing the actual benchmark

result for the baseline platform into each of the specific benchmark results of each of the other platforms and assigning them a relative

performance number that correlates with the performance improvements reported.

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to

any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such

products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel

products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent,

copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Copyright © 2014 Intel Corporation. All rights reserved. Intel, the Intel logo, Intel CoFluent Studio, and Intel CoFluent Reader are

trademarks of Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others.

Printed in USA 0612/VP/OCG/XX/PDF Please Recycle 327566-001US

	1 Introduction
	2 Model Packaging
	3 Application Modeling
	3.1 Structure
	3.2 Behavior
	3.3 Intel® CoFluent™ Application Profile
	3.4 Tools: UML Modelers and Intel® CoFluent™ Studio Integration
	3.4.1 MagicDraw*
	3.4.2 Papyrus*

	4 Platform Modeling
	5 Allocation
	5.1 Allocated Model Execution in Intel® CoFluent™ Studio

	6 Conclusion

